Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues Modell zur Informationsübertragung ins Zellinnere

08.09.2006
Signale können über molekulare Zahnrädchen übertragen werden

Damit Bakterienzellen die Außenwelt wahrnehmen und auf sie reagieren können, müssen sie Informationen über ihre Umgebung in die Zelle hinein weiterleiten. Dabei wird zunächst ein Signalstoff an einen Rezeptor gebunden, der außen an der Zelle sitzt. Viele Rezeptorproteine sind bereits bekannt, doch über die molekularen Mechanismen der Signalübertragung ins Zellinnere gab es bisher vor allem Spekulationen.

Nun ist es Wissenschaftlern vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen unter der Leitung von Dr. Andrei Lupas und von der Universität Tübingen unter der Leitung von Prof. Joachim E. Schultz gelungen, die Struktur eines wichtigen Teilbereichs eines Rezeptorproteins aus dem Archaebakterium Archaeoglobus fulgidus aufzuklären. Diese so genannte HAMP-Domäne verbindet den extrazellulären mit dem intrazellulären Bereich des Rezeptorproteins und spielt eine entscheidende Rolle bei der Signalweiterleitung. Die Struktur offenbart die Fähigkeit der HAMP-Domäne, zwischen zwei Konformationen hin und her zu wechseln.

Die Wissenschaftler erklären diesen Gestaltwechsel mit einer Bewegung, die an die Rotation von vier ineinander greifenden Zahnrädern erinnert. Die Forschungsergebnisse werden jetzt in der Fachzeitschrift Cell veröffentlicht (Cell, 8. September 2006. Michael Hulko, Franziska Berndt, Markus Gruber, Jürgen U. Linder, Vincent Truffault, Anita Schultz, Jörg Martin, Joachim E. Schultz, Andrei Lupas, Murray Coles: "The HAMP domain structure implies helix rotation in transmembrane signaling")

Bakterien haben eine Vielzahl sensorischer Systeme entwickelt, um ihre Umwelt wahrzunehmen und darauf zu reagieren. Oft spüren sie damit günstigere, zum Beispiel nährstoffreichere, Umgebungen auf und bewegen sich aktiv darauf zu. Das gezielte Wandern in Richtung einer höheren Stoffkonzentration bezeichnet man als Chemotaxis. Normalerweise bewegen sich Bakterien eher ungezielt und schwimmen taumelnd um ihren Aufenthaltsort herum. Gerät die Bakterienzelle in einen Konzentrationsgradienten eines attraktiven Stoffs, wie zum Beispiel Zucker, und ist in dessen Richtung ausgerichtet, so wird ein Schalter in der Zelle umgelegt: Um dem Gradienten folgen zu können, wird die Schwimmbewegung zeitlich verlängert. Die Schalter befinden sich in der Zellmembran hauptsächlich an den Zellpolen. Dabei handelt es sich um Proteine, die einen in den Außenraum ragenden extrazellulären Teil besitzen, mit dem sie äußere Reize aufnehmen, und einen intrazellulären Teil, der das Signal für die Bewegungsänderung in die Zelle weiterleitet. Die Tübinger Wissenschaftler wollten nun genau wissen, was dabei passiert. Bei der Chemotaxis löst die Bindung eines Signalmoleküls an den extrazellulären Teil eines Rezeptors über mehrere Stufen die Phosphorylierung bestimmter Proteine in der Zelle aus, die den Bewegungsapparat des Bakteriums beeinflussen. Da der Signalstoff nicht in die Zelle hinein transportiert wird, kann das Signal nur auf mechanischem Wege weitergegeben werden. Es muss zu einer Konformationsänderung im Rezeptor kommen. Wie diese vor sich geht, war allerdings bisher unklar. Denn die molekulare Struktur der HAMP-Domäne, die den extra- mit dem intrazellulären Teil des Rezeptors verbindet, war nicht bekannt.

Ihre Aufklärung ist nun den Tübinger Forschern unter der Leitung von Andrei Lupas mittels Kernresonanzspektroskopie (NMR-Spektroskopie) gelungen. Sie wählten dafür eine HAMP-Domäne aus dem Archaebakterium Archaeoglobus fulgidus, das in heißen Quellen von etwa 100 Grad Celsius lebt. Der Vorteil: Das Protein dieses Organismus ist bei Raumtemperatur starr und daher für die spektroskopische Untersuchung geeignet. Die Strukturuntersuchungen offenbarten, dass es sich bei der HAMP-Domäne um ein Bündel aus zwei mal zwei parallel angeordneten Spiralen, so genannten alpha-Helices, handelt. Dabei entdeckten die Wissenschaftler eine neuartige geometrische Anordnung der Seitenketten im Inneren der Helixbündel. Computermodelle zeigten, dass sich die neuartige Anordnung durch eine zahnradartige Drehung der einzelnen Helices in die bekannte Geometrie überführen ließ. Die Forscher vermuteten daher, dass beide Geometrien - oder Konformationen - je einen Signalzustand repräsentieren und die zahnradartige Helixrotation die Signalübertragung möglich macht. Durch gezielte Mutationen einzelner Proteinbausteine des Rezeptors konnte die Arbeitsgruppe von Joachim E. Schultz von der Universität Tübingen dann zeigen, dass sich die HAMP-Domäne tatsächlich in einen anderen Signalzustand versetzen lässt, wenn man versucht, die herkömmliche Konformation gegenüber der neuartigen zu stabilisieren.

Noch fehlt die Struktur der zweiten Schalterstellung, auf deren Existenz alle bisherigen Hinweise deuten. Auch möchten die Wissenschaftler gerne wissen, durch welche Eigenschaften die einzelnen Schalterstellungen stabilisiert werden und wie sich das Umschalten modulieren lässt. Dieser in Bakterien gefundene Zahnradmechanismus könnte - so ihre Spekulation - eine universelle Bedeutung haben.

Nähere Informationen

Prof. Dr. Joachim E. Schultz
Pharmazeutisches Institut - Abteilung Pharmazeutische Biochemie
Auf der Morgenstelle 8
72076 Tübingen
Tel. 0 70 71/2 97 24 75
Fax 0 70 71/29 59 52
E-Mail joachim.schultz@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Bakterium HAMP-Domäne Konformation Protein Rezeptor Zelle Zellinnere

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie