Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues Modell zur Informationsübertragung ins Zellinnere

08.09.2006
Signale können über molekulare Zahnrädchen übertragen werden

Damit Bakterienzellen die Außenwelt wahrnehmen und auf sie reagieren können, müssen sie Informationen über ihre Umgebung in die Zelle hinein weiterleiten. Dabei wird zunächst ein Signalstoff an einen Rezeptor gebunden, der außen an der Zelle sitzt. Viele Rezeptorproteine sind bereits bekannt, doch über die molekularen Mechanismen der Signalübertragung ins Zellinnere gab es bisher vor allem Spekulationen.

Nun ist es Wissenschaftlern vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen unter der Leitung von Dr. Andrei Lupas und von der Universität Tübingen unter der Leitung von Prof. Joachim E. Schultz gelungen, die Struktur eines wichtigen Teilbereichs eines Rezeptorproteins aus dem Archaebakterium Archaeoglobus fulgidus aufzuklären. Diese so genannte HAMP-Domäne verbindet den extrazellulären mit dem intrazellulären Bereich des Rezeptorproteins und spielt eine entscheidende Rolle bei der Signalweiterleitung. Die Struktur offenbart die Fähigkeit der HAMP-Domäne, zwischen zwei Konformationen hin und her zu wechseln.

Die Wissenschaftler erklären diesen Gestaltwechsel mit einer Bewegung, die an die Rotation von vier ineinander greifenden Zahnrädern erinnert. Die Forschungsergebnisse werden jetzt in der Fachzeitschrift Cell veröffentlicht (Cell, 8. September 2006. Michael Hulko, Franziska Berndt, Markus Gruber, Jürgen U. Linder, Vincent Truffault, Anita Schultz, Jörg Martin, Joachim E. Schultz, Andrei Lupas, Murray Coles: "The HAMP domain structure implies helix rotation in transmembrane signaling")

Bakterien haben eine Vielzahl sensorischer Systeme entwickelt, um ihre Umwelt wahrzunehmen und darauf zu reagieren. Oft spüren sie damit günstigere, zum Beispiel nährstoffreichere, Umgebungen auf und bewegen sich aktiv darauf zu. Das gezielte Wandern in Richtung einer höheren Stoffkonzentration bezeichnet man als Chemotaxis. Normalerweise bewegen sich Bakterien eher ungezielt und schwimmen taumelnd um ihren Aufenthaltsort herum. Gerät die Bakterienzelle in einen Konzentrationsgradienten eines attraktiven Stoffs, wie zum Beispiel Zucker, und ist in dessen Richtung ausgerichtet, so wird ein Schalter in der Zelle umgelegt: Um dem Gradienten folgen zu können, wird die Schwimmbewegung zeitlich verlängert. Die Schalter befinden sich in der Zellmembran hauptsächlich an den Zellpolen. Dabei handelt es sich um Proteine, die einen in den Außenraum ragenden extrazellulären Teil besitzen, mit dem sie äußere Reize aufnehmen, und einen intrazellulären Teil, der das Signal für die Bewegungsänderung in die Zelle weiterleitet. Die Tübinger Wissenschaftler wollten nun genau wissen, was dabei passiert. Bei der Chemotaxis löst die Bindung eines Signalmoleküls an den extrazellulären Teil eines Rezeptors über mehrere Stufen die Phosphorylierung bestimmter Proteine in der Zelle aus, die den Bewegungsapparat des Bakteriums beeinflussen. Da der Signalstoff nicht in die Zelle hinein transportiert wird, kann das Signal nur auf mechanischem Wege weitergegeben werden. Es muss zu einer Konformationsänderung im Rezeptor kommen. Wie diese vor sich geht, war allerdings bisher unklar. Denn die molekulare Struktur der HAMP-Domäne, die den extra- mit dem intrazellulären Teil des Rezeptors verbindet, war nicht bekannt.

Ihre Aufklärung ist nun den Tübinger Forschern unter der Leitung von Andrei Lupas mittels Kernresonanzspektroskopie (NMR-Spektroskopie) gelungen. Sie wählten dafür eine HAMP-Domäne aus dem Archaebakterium Archaeoglobus fulgidus, das in heißen Quellen von etwa 100 Grad Celsius lebt. Der Vorteil: Das Protein dieses Organismus ist bei Raumtemperatur starr und daher für die spektroskopische Untersuchung geeignet. Die Strukturuntersuchungen offenbarten, dass es sich bei der HAMP-Domäne um ein Bündel aus zwei mal zwei parallel angeordneten Spiralen, so genannten alpha-Helices, handelt. Dabei entdeckten die Wissenschaftler eine neuartige geometrische Anordnung der Seitenketten im Inneren der Helixbündel. Computermodelle zeigten, dass sich die neuartige Anordnung durch eine zahnradartige Drehung der einzelnen Helices in die bekannte Geometrie überführen ließ. Die Forscher vermuteten daher, dass beide Geometrien - oder Konformationen - je einen Signalzustand repräsentieren und die zahnradartige Helixrotation die Signalübertragung möglich macht. Durch gezielte Mutationen einzelner Proteinbausteine des Rezeptors konnte die Arbeitsgruppe von Joachim E. Schultz von der Universität Tübingen dann zeigen, dass sich die HAMP-Domäne tatsächlich in einen anderen Signalzustand versetzen lässt, wenn man versucht, die herkömmliche Konformation gegenüber der neuartigen zu stabilisieren.

Noch fehlt die Struktur der zweiten Schalterstellung, auf deren Existenz alle bisherigen Hinweise deuten. Auch möchten die Wissenschaftler gerne wissen, durch welche Eigenschaften die einzelnen Schalterstellungen stabilisiert werden und wie sich das Umschalten modulieren lässt. Dieser in Bakterien gefundene Zahnradmechanismus könnte - so ihre Spekulation - eine universelle Bedeutung haben.

Nähere Informationen

Prof. Dr. Joachim E. Schultz
Pharmazeutisches Institut - Abteilung Pharmazeutische Biochemie
Auf der Morgenstelle 8
72076 Tübingen
Tel. 0 70 71/2 97 24 75
Fax 0 70 71/29 59 52
E-Mail joachim.schultz@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Bakterium HAMP-Domäne Konformation Protein Rezeptor Zelle Zellinnere

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie