Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues Modell zur Informationsübertragung ins Zellinnere

08.09.2006
Signale können über molekulare Zahnrädchen übertragen werden

Damit Bakterienzellen die Außenwelt wahrnehmen und auf sie reagieren können, müssen sie Informationen über ihre Umgebung in die Zelle hinein weiterleiten. Dabei wird zunächst ein Signalstoff an einen Rezeptor gebunden, der außen an der Zelle sitzt. Viele Rezeptorproteine sind bereits bekannt, doch über die molekularen Mechanismen der Signalübertragung ins Zellinnere gab es bisher vor allem Spekulationen.

Nun ist es Wissenschaftlern vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen unter der Leitung von Dr. Andrei Lupas und von der Universität Tübingen unter der Leitung von Prof. Joachim E. Schultz gelungen, die Struktur eines wichtigen Teilbereichs eines Rezeptorproteins aus dem Archaebakterium Archaeoglobus fulgidus aufzuklären. Diese so genannte HAMP-Domäne verbindet den extrazellulären mit dem intrazellulären Bereich des Rezeptorproteins und spielt eine entscheidende Rolle bei der Signalweiterleitung. Die Struktur offenbart die Fähigkeit der HAMP-Domäne, zwischen zwei Konformationen hin und her zu wechseln.

Die Wissenschaftler erklären diesen Gestaltwechsel mit einer Bewegung, die an die Rotation von vier ineinander greifenden Zahnrädern erinnert. Die Forschungsergebnisse werden jetzt in der Fachzeitschrift Cell veröffentlicht (Cell, 8. September 2006. Michael Hulko, Franziska Berndt, Markus Gruber, Jürgen U. Linder, Vincent Truffault, Anita Schultz, Jörg Martin, Joachim E. Schultz, Andrei Lupas, Murray Coles: "The HAMP domain structure implies helix rotation in transmembrane signaling")

Bakterien haben eine Vielzahl sensorischer Systeme entwickelt, um ihre Umwelt wahrzunehmen und darauf zu reagieren. Oft spüren sie damit günstigere, zum Beispiel nährstoffreichere, Umgebungen auf und bewegen sich aktiv darauf zu. Das gezielte Wandern in Richtung einer höheren Stoffkonzentration bezeichnet man als Chemotaxis. Normalerweise bewegen sich Bakterien eher ungezielt und schwimmen taumelnd um ihren Aufenthaltsort herum. Gerät die Bakterienzelle in einen Konzentrationsgradienten eines attraktiven Stoffs, wie zum Beispiel Zucker, und ist in dessen Richtung ausgerichtet, so wird ein Schalter in der Zelle umgelegt: Um dem Gradienten folgen zu können, wird die Schwimmbewegung zeitlich verlängert. Die Schalter befinden sich in der Zellmembran hauptsächlich an den Zellpolen. Dabei handelt es sich um Proteine, die einen in den Außenraum ragenden extrazellulären Teil besitzen, mit dem sie äußere Reize aufnehmen, und einen intrazellulären Teil, der das Signal für die Bewegungsänderung in die Zelle weiterleitet. Die Tübinger Wissenschaftler wollten nun genau wissen, was dabei passiert. Bei der Chemotaxis löst die Bindung eines Signalmoleküls an den extrazellulären Teil eines Rezeptors über mehrere Stufen die Phosphorylierung bestimmter Proteine in der Zelle aus, die den Bewegungsapparat des Bakteriums beeinflussen. Da der Signalstoff nicht in die Zelle hinein transportiert wird, kann das Signal nur auf mechanischem Wege weitergegeben werden. Es muss zu einer Konformationsänderung im Rezeptor kommen. Wie diese vor sich geht, war allerdings bisher unklar. Denn die molekulare Struktur der HAMP-Domäne, die den extra- mit dem intrazellulären Teil des Rezeptors verbindet, war nicht bekannt.

Ihre Aufklärung ist nun den Tübinger Forschern unter der Leitung von Andrei Lupas mittels Kernresonanzspektroskopie (NMR-Spektroskopie) gelungen. Sie wählten dafür eine HAMP-Domäne aus dem Archaebakterium Archaeoglobus fulgidus, das in heißen Quellen von etwa 100 Grad Celsius lebt. Der Vorteil: Das Protein dieses Organismus ist bei Raumtemperatur starr und daher für die spektroskopische Untersuchung geeignet. Die Strukturuntersuchungen offenbarten, dass es sich bei der HAMP-Domäne um ein Bündel aus zwei mal zwei parallel angeordneten Spiralen, so genannten alpha-Helices, handelt. Dabei entdeckten die Wissenschaftler eine neuartige geometrische Anordnung der Seitenketten im Inneren der Helixbündel. Computermodelle zeigten, dass sich die neuartige Anordnung durch eine zahnradartige Drehung der einzelnen Helices in die bekannte Geometrie überführen ließ. Die Forscher vermuteten daher, dass beide Geometrien - oder Konformationen - je einen Signalzustand repräsentieren und die zahnradartige Helixrotation die Signalübertragung möglich macht. Durch gezielte Mutationen einzelner Proteinbausteine des Rezeptors konnte die Arbeitsgruppe von Joachim E. Schultz von der Universität Tübingen dann zeigen, dass sich die HAMP-Domäne tatsächlich in einen anderen Signalzustand versetzen lässt, wenn man versucht, die herkömmliche Konformation gegenüber der neuartigen zu stabilisieren.

Noch fehlt die Struktur der zweiten Schalterstellung, auf deren Existenz alle bisherigen Hinweise deuten. Auch möchten die Wissenschaftler gerne wissen, durch welche Eigenschaften die einzelnen Schalterstellungen stabilisiert werden und wie sich das Umschalten modulieren lässt. Dieser in Bakterien gefundene Zahnradmechanismus könnte - so ihre Spekulation - eine universelle Bedeutung haben.

Nähere Informationen

Prof. Dr. Joachim E. Schultz
Pharmazeutisches Institut - Abteilung Pharmazeutische Biochemie
Auf der Morgenstelle 8
72076 Tübingen
Tel. 0 70 71/2 97 24 75
Fax 0 70 71/29 59 52
E-Mail joachim.schultz@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Bakterium HAMP-Domäne Konformation Protein Rezeptor Zelle Zellinnere

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise