Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extrem anziehend - Karlsruher Chemiker stellen magnetisches Molekül her

30.08.2006
Vögel, Fische und andere Lebewesen orientieren sich bei ihren Wanderungen am Magnetfeld der Erde. Sie nutzen dazu winzige Kristalle des Eisenoxids Magnetit, das starke magnetische Eigenschaften hat und vermutlich im Kopf dieser Lebewesen angelagert ist.

Diese Teilchen haben sich Wissenschaftler weltweit zum Vorbild genommen – sie wollen kleinste Magneten, die nur aus einem einzigen Molekül bestehen, künstlich herstellen: Die Vorteile dieser so genannten molekularen Magneten bestehen darin, dass sie viel flexibler als herkömmliche Magneten aus Metallen oder Oxiden sind. Außerdem verfügen sie über ein „Gedächtnis“. Mögliches Einsatzfeld sind magnetische RAMs, Arbeitsspeicher im Computer, die sich mehr Informationen dauerhaft merken und dadurch schneller sind. Professorin Dr. Annie Powell vom Institut für Anorganischen Chemie an der Universität Karlsruhe und ihr Team haben ein solches Molekül hergestellt, das in seinen magnetischen Eigenschaften alle vorangegangenen Versuche übertrifft: Mit „S = 83/2“ – dem Wert, der den Magnetismus des Moleküls beschreibt – haben sie einen Weltrekord aufgestellt. Das Ergebnis veröffentlichen die Wissenschaftler im August in der Fachzeitschrift „Angewandte Chemie“.

Verantwortlich für diese magnetischen Eigenschaften ist der sogenannte Elektronenspin, der Eigendrehimpuls von Elektronen. Normalerweise kommen Elektronen in einem Atom gepaart vor, d. h. sie teilen sich einen bestimmten Raum innerhalb der Atomhülle. Die Richtungen der Spins dieser beiden Elektronen sind einander genau entgegengesetzt. „Unsere Schwierigkeit besteht darin“, erklärt Annie Powell, „zu erreichen, dass die Spins parallel stehen – und damit magnetisch sind.“ Ziel der Karlsruher Forscher war deshalb, durch eine besondere Bauweise des Moleküls möglichst viele einzelne, ungepaarte Elektronen mit dem gleichen Drehimpuls zu erhalten, denn: Je mehr Spins, desto mehr Magnetismus.

Das neue Molekül besteht aus 19 Mangan-Zentren. Insgesamt hat das Molekül 83 ungepaarte Elektronen, alle Spins zeigen in eine Richtung. Damit übertreffen Powell und ihr Team den bisherigen Rekord ungepaarter Elektronen, der in den USA aufgestellt wurde, deutlich. Nun geht es darum, die Bedingungen herauszufinden, unter denen sich das Molekül reproduzieren und damit industriell herstellen lässt. Ein weiteres Anwendungsfeld der Nano-Magneten könnte die Krebs-Therapie sein.

... mehr zu:
»Elektron »Magnete »Magnetismus »Molekül »Spin
Powell und ihre Mitarbeiter sind die einzigen Forscher aus Deutschland, die am
Exzellenznetzwerk „MAGMANet“ (steht für „Molecular Approach to Nanomagnets and Multifunctional Materials“) beteiligt sind. Hier arbeiten sie mit Wissenschaftlern von 17 Universitäten und Instituten aus ganz Europa zusammen. Finanziert wird dieses Projekt von der EU.
Weitere Informationen:
Klaus Rümmele
Presse und Kommunikation
Telefon 0721/608-8153
E-Mail ruemmele@verwaltung.uni-karlsruhe.de

Klaus Rümmele | Universität Karlsruhe (TH)
Weitere Informationen:
http://www.uni-karlsruhe.de

Weitere Berichte zu: Elektron Magnete Magnetismus Molekül Spin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen