Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aller guten Dinge sind drei - Mysteriöses Molekül der Proteinsynthese in Hefe entschlüsselt

24.08.2006
Die Übersetzung genetischer Information in Proteine findet in allen Zellen an den Ribosomen statt. Diese großen molekularen Maschinen müssen dafür mit nur zwei Hilfsfaktoren zusammenarbeiten - zumindest in Menschen, Pflanzen und Bakterien.

In Hefe und anderen Pilzzellen aber findet sich ein weiterer dieser so genannten Elongationsfaktoren, eEF3. Von ihm war nur bekannt, dass er das energiereiche ATP-Molekül bindet und spaltet. Wofür er aber diese Energie benötigt, war ungeklärt. Ein internationales Forscherteam konnte jetzt unter der Leitung von Prof. Dr. Roland Beckmann vom Genzentrum und dem Department für Chemie und Biochemie der Ludwig-Maximilians-Universität (LMU) München die Struktur von eEF3 entschlüsseln. Wie die Wissenschaftler zudem in "Nature" berichten, entfernt eEF3 ein Molekül der Proteinsynthese, sobald dieses seine Funktion erfüllt hat, vom Ribosom.

Dabei nutzt eEF3 eine bislang unbekannte Bindungsstelle an diesem großen Komplex. Doch eEF3 ist nicht nur als essentieller Faktor der Proteinsynthese interessant. "Weil es nur in Pilzen vorkommt, könnte eEF3 das sehr selektive Angriffsziel eines Fungizids sein", so Beckmann.

Proteine bestehen aus einer oder mehreren Ketten, die auf genau festgelegte Weise aus Aminosäuren zusammengesetzt sind. Diese linearen Ketten müssen sich dann auf je spezifische Weise dreidimensional falten, um ein funktionierendes Protein zu erzeugen. Die Information für die Sequenz der Aminosäuren wird von der DNA, dem genetischen Material, vorgegeben. Doch der Weg vom Gen, also bestimmten Abschnitten der DNA, zum zugehörigen Protein ist weit.

Zunächst wird in der so genannten Transkription das Gen in RNA, eine der DNA verwandte Nukleinsäure, mit genau entsprechender Sequenz übertragen. Dieses Molekül verlässt als mRNA den Zellkern. Im Zytoplasma, dem Zellinneren ohne den Zellkern, wird die RNA dann in der so genannten Translation von den Ribosomen schrittweise abgelesen und in eine passende Kette aus Aminosäuren übertragen.

Dabei kodieren je drei mRNA-Bausteine, ein Codon, für eine Aminosäure. Mittler der Umsetzungsreaktion sind die tRNA-Moleküle, die mit je einer Aminosäure beladen sind und das dazu passende mRNA-Codon erkennen.

Bislang waren nur die Bindungsstellen am Ribosom bekannt. An der A-Stelle oder Aminoacyl-tRNA-Bindungsstelle dockt jeweils die tRNA an, die das nächste mRNA-Codon erkannt hat. Im nächsten Schritt wird die zugehörige Aminosäure an der P-Stelle oder Peptidyl-tRNA-Bindungsstelle an die wachsende Aminosäurekette angehängt. Die "leere" tRNA verlässt dann über die E-Stelle - "E" steht für "Exit" - das Ribosom und wird erneut mit einer Aminosäure beladen. "Für diesen Prozess werden in allen Lebewesen zwei Hilfsfaktoren benötigt", berichtet Beckmann. "Der Elongationsfaktor 1A vermittelt die Anheftung der beladenen tRNAs mit ihren Aminosäuren an die A-Stelle. Der Elongationsfaktor 2 dagegen treibt die ribosomale Maschine um ein Codon voran." Das bedeutet, dass dieses Molekül nötig ist für die Bewegung der mRNA und der tRNA von der A-Stelle zur P-Stelle und von der P-Stelle zur E-Stelle.

"In Hefe und anderen Pilzzellen gibt es nun als Besonderheit diesen dritten Faktor", so Beckmann. "Es war klar, dass eEF3 essentiell ist, weil die Zelle ohne diesen Faktor nicht überleben kann. Man wusste aber nicht, was genau dieser Faktor tut, welche Struktur er hat und wie er mit dem Ribosom interagiert. Wir konnten nun aber die molekulare Struktur von eEF3 darstellen und zudem den Faktor im Komplex mit dem Ribosom visualisieren." Dabei zeigte sich, dass eEF3 aus fünf strukturellen Domänen besteht. Zudem konnten die Forscher den Elongationsfaktor zusammen mit einem Ribosom darstellen, während sich eine "leere" tRNA an der P-Stelle befindet.

Dabei ist eine Domäne von eEF3 nahe der E-Stelle positioniert, wo es mit einer Untereinheit des Ribosoms interagieren kann - wie auch mit dem so genannten "L1-Arm". Das ist eine bewegliche, pilzförmige Struktur direkt neben der E-Stelle. Der "L1-Arm" kontrolliert wohl den Zugang der tRNA zur E-Stelle. Die Ergebnisse des Forscherteams lassen vermuten, dass eEF3 den "L1-Arm" so stabilisieren kann, dass "leere" tRNAs zur E-Stelle gelangen können - und dann erst freigesetzt werden.

Publikation:
"Structure of eEF3 and the mechanism of tRNA release from the E-site", Christian B.F. Andersen, Thomas Becker, Michael Blau, Monika Anand, Mario Halic, Bharvi Balar, Thorsten Mielke, Thomas Boesen, Jan Skov Pedersen, Christian M.T. Spahn, Terri Goss Kinzy, Gregers R. Andersen, Roland Beckmann, Nature Structural and Molecular Biology, September 2006
Ansprechpartner:
Prof. Dr. Roland Beckmann
Genzentrum und Department für Chemie und Biochemie der LMU
Tel.: 089- 2180 76900
Fax: 089- 2180 76945
E-Mail: beckmann@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Aminosäure E-Stelle Elongationsfaktor Hefe Molekül P-Stelle Proteinsynthese Ribosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten