Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aller guten Dinge sind drei - Mysteriöses Molekül der Proteinsynthese in Hefe entschlüsselt

24.08.2006
Die Übersetzung genetischer Information in Proteine findet in allen Zellen an den Ribosomen statt. Diese großen molekularen Maschinen müssen dafür mit nur zwei Hilfsfaktoren zusammenarbeiten - zumindest in Menschen, Pflanzen und Bakterien.

In Hefe und anderen Pilzzellen aber findet sich ein weiterer dieser so genannten Elongationsfaktoren, eEF3. Von ihm war nur bekannt, dass er das energiereiche ATP-Molekül bindet und spaltet. Wofür er aber diese Energie benötigt, war ungeklärt. Ein internationales Forscherteam konnte jetzt unter der Leitung von Prof. Dr. Roland Beckmann vom Genzentrum und dem Department für Chemie und Biochemie der Ludwig-Maximilians-Universität (LMU) München die Struktur von eEF3 entschlüsseln. Wie die Wissenschaftler zudem in "Nature" berichten, entfernt eEF3 ein Molekül der Proteinsynthese, sobald dieses seine Funktion erfüllt hat, vom Ribosom.

Dabei nutzt eEF3 eine bislang unbekannte Bindungsstelle an diesem großen Komplex. Doch eEF3 ist nicht nur als essentieller Faktor der Proteinsynthese interessant. "Weil es nur in Pilzen vorkommt, könnte eEF3 das sehr selektive Angriffsziel eines Fungizids sein", so Beckmann.

Proteine bestehen aus einer oder mehreren Ketten, die auf genau festgelegte Weise aus Aminosäuren zusammengesetzt sind. Diese linearen Ketten müssen sich dann auf je spezifische Weise dreidimensional falten, um ein funktionierendes Protein zu erzeugen. Die Information für die Sequenz der Aminosäuren wird von der DNA, dem genetischen Material, vorgegeben. Doch der Weg vom Gen, also bestimmten Abschnitten der DNA, zum zugehörigen Protein ist weit.

Zunächst wird in der so genannten Transkription das Gen in RNA, eine der DNA verwandte Nukleinsäure, mit genau entsprechender Sequenz übertragen. Dieses Molekül verlässt als mRNA den Zellkern. Im Zytoplasma, dem Zellinneren ohne den Zellkern, wird die RNA dann in der so genannten Translation von den Ribosomen schrittweise abgelesen und in eine passende Kette aus Aminosäuren übertragen.

Dabei kodieren je drei mRNA-Bausteine, ein Codon, für eine Aminosäure. Mittler der Umsetzungsreaktion sind die tRNA-Moleküle, die mit je einer Aminosäure beladen sind und das dazu passende mRNA-Codon erkennen.

Bislang waren nur die Bindungsstellen am Ribosom bekannt. An der A-Stelle oder Aminoacyl-tRNA-Bindungsstelle dockt jeweils die tRNA an, die das nächste mRNA-Codon erkannt hat. Im nächsten Schritt wird die zugehörige Aminosäure an der P-Stelle oder Peptidyl-tRNA-Bindungsstelle an die wachsende Aminosäurekette angehängt. Die "leere" tRNA verlässt dann über die E-Stelle - "E" steht für "Exit" - das Ribosom und wird erneut mit einer Aminosäure beladen. "Für diesen Prozess werden in allen Lebewesen zwei Hilfsfaktoren benötigt", berichtet Beckmann. "Der Elongationsfaktor 1A vermittelt die Anheftung der beladenen tRNAs mit ihren Aminosäuren an die A-Stelle. Der Elongationsfaktor 2 dagegen treibt die ribosomale Maschine um ein Codon voran." Das bedeutet, dass dieses Molekül nötig ist für die Bewegung der mRNA und der tRNA von der A-Stelle zur P-Stelle und von der P-Stelle zur E-Stelle.

"In Hefe und anderen Pilzzellen gibt es nun als Besonderheit diesen dritten Faktor", so Beckmann. "Es war klar, dass eEF3 essentiell ist, weil die Zelle ohne diesen Faktor nicht überleben kann. Man wusste aber nicht, was genau dieser Faktor tut, welche Struktur er hat und wie er mit dem Ribosom interagiert. Wir konnten nun aber die molekulare Struktur von eEF3 darstellen und zudem den Faktor im Komplex mit dem Ribosom visualisieren." Dabei zeigte sich, dass eEF3 aus fünf strukturellen Domänen besteht. Zudem konnten die Forscher den Elongationsfaktor zusammen mit einem Ribosom darstellen, während sich eine "leere" tRNA an der P-Stelle befindet.

Dabei ist eine Domäne von eEF3 nahe der E-Stelle positioniert, wo es mit einer Untereinheit des Ribosoms interagieren kann - wie auch mit dem so genannten "L1-Arm". Das ist eine bewegliche, pilzförmige Struktur direkt neben der E-Stelle. Der "L1-Arm" kontrolliert wohl den Zugang der tRNA zur E-Stelle. Die Ergebnisse des Forscherteams lassen vermuten, dass eEF3 den "L1-Arm" so stabilisieren kann, dass "leere" tRNAs zur E-Stelle gelangen können - und dann erst freigesetzt werden.

Publikation:
"Structure of eEF3 and the mechanism of tRNA release from the E-site", Christian B.F. Andersen, Thomas Becker, Michael Blau, Monika Anand, Mario Halic, Bharvi Balar, Thorsten Mielke, Thomas Boesen, Jan Skov Pedersen, Christian M.T. Spahn, Terri Goss Kinzy, Gregers R. Andersen, Roland Beckmann, Nature Structural and Molecular Biology, September 2006
Ansprechpartner:
Prof. Dr. Roland Beckmann
Genzentrum und Department für Chemie und Biochemie der LMU
Tel.: 089- 2180 76900
Fax: 089- 2180 76945
E-Mail: beckmann@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Aminosäure E-Stelle Elongationsfaktor Hefe Molekül P-Stelle Proteinsynthese Ribosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie