Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aller guten Dinge sind drei - Mysteriöses Molekül der Proteinsynthese in Hefe entschlüsselt

24.08.2006
Die Übersetzung genetischer Information in Proteine findet in allen Zellen an den Ribosomen statt. Diese großen molekularen Maschinen müssen dafür mit nur zwei Hilfsfaktoren zusammenarbeiten - zumindest in Menschen, Pflanzen und Bakterien.

In Hefe und anderen Pilzzellen aber findet sich ein weiterer dieser so genannten Elongationsfaktoren, eEF3. Von ihm war nur bekannt, dass er das energiereiche ATP-Molekül bindet und spaltet. Wofür er aber diese Energie benötigt, war ungeklärt. Ein internationales Forscherteam konnte jetzt unter der Leitung von Prof. Dr. Roland Beckmann vom Genzentrum und dem Department für Chemie und Biochemie der Ludwig-Maximilians-Universität (LMU) München die Struktur von eEF3 entschlüsseln. Wie die Wissenschaftler zudem in "Nature" berichten, entfernt eEF3 ein Molekül der Proteinsynthese, sobald dieses seine Funktion erfüllt hat, vom Ribosom.

Dabei nutzt eEF3 eine bislang unbekannte Bindungsstelle an diesem großen Komplex. Doch eEF3 ist nicht nur als essentieller Faktor der Proteinsynthese interessant. "Weil es nur in Pilzen vorkommt, könnte eEF3 das sehr selektive Angriffsziel eines Fungizids sein", so Beckmann.

Proteine bestehen aus einer oder mehreren Ketten, die auf genau festgelegte Weise aus Aminosäuren zusammengesetzt sind. Diese linearen Ketten müssen sich dann auf je spezifische Weise dreidimensional falten, um ein funktionierendes Protein zu erzeugen. Die Information für die Sequenz der Aminosäuren wird von der DNA, dem genetischen Material, vorgegeben. Doch der Weg vom Gen, also bestimmten Abschnitten der DNA, zum zugehörigen Protein ist weit.

Zunächst wird in der so genannten Transkription das Gen in RNA, eine der DNA verwandte Nukleinsäure, mit genau entsprechender Sequenz übertragen. Dieses Molekül verlässt als mRNA den Zellkern. Im Zytoplasma, dem Zellinneren ohne den Zellkern, wird die RNA dann in der so genannten Translation von den Ribosomen schrittweise abgelesen und in eine passende Kette aus Aminosäuren übertragen.

Dabei kodieren je drei mRNA-Bausteine, ein Codon, für eine Aminosäure. Mittler der Umsetzungsreaktion sind die tRNA-Moleküle, die mit je einer Aminosäure beladen sind und das dazu passende mRNA-Codon erkennen.

Bislang waren nur die Bindungsstellen am Ribosom bekannt. An der A-Stelle oder Aminoacyl-tRNA-Bindungsstelle dockt jeweils die tRNA an, die das nächste mRNA-Codon erkannt hat. Im nächsten Schritt wird die zugehörige Aminosäure an der P-Stelle oder Peptidyl-tRNA-Bindungsstelle an die wachsende Aminosäurekette angehängt. Die "leere" tRNA verlässt dann über die E-Stelle - "E" steht für "Exit" - das Ribosom und wird erneut mit einer Aminosäure beladen. "Für diesen Prozess werden in allen Lebewesen zwei Hilfsfaktoren benötigt", berichtet Beckmann. "Der Elongationsfaktor 1A vermittelt die Anheftung der beladenen tRNAs mit ihren Aminosäuren an die A-Stelle. Der Elongationsfaktor 2 dagegen treibt die ribosomale Maschine um ein Codon voran." Das bedeutet, dass dieses Molekül nötig ist für die Bewegung der mRNA und der tRNA von der A-Stelle zur P-Stelle und von der P-Stelle zur E-Stelle.

"In Hefe und anderen Pilzzellen gibt es nun als Besonderheit diesen dritten Faktor", so Beckmann. "Es war klar, dass eEF3 essentiell ist, weil die Zelle ohne diesen Faktor nicht überleben kann. Man wusste aber nicht, was genau dieser Faktor tut, welche Struktur er hat und wie er mit dem Ribosom interagiert. Wir konnten nun aber die molekulare Struktur von eEF3 darstellen und zudem den Faktor im Komplex mit dem Ribosom visualisieren." Dabei zeigte sich, dass eEF3 aus fünf strukturellen Domänen besteht. Zudem konnten die Forscher den Elongationsfaktor zusammen mit einem Ribosom darstellen, während sich eine "leere" tRNA an der P-Stelle befindet.

Dabei ist eine Domäne von eEF3 nahe der E-Stelle positioniert, wo es mit einer Untereinheit des Ribosoms interagieren kann - wie auch mit dem so genannten "L1-Arm". Das ist eine bewegliche, pilzförmige Struktur direkt neben der E-Stelle. Der "L1-Arm" kontrolliert wohl den Zugang der tRNA zur E-Stelle. Die Ergebnisse des Forscherteams lassen vermuten, dass eEF3 den "L1-Arm" so stabilisieren kann, dass "leere" tRNAs zur E-Stelle gelangen können - und dann erst freigesetzt werden.

Publikation:
"Structure of eEF3 and the mechanism of tRNA release from the E-site", Christian B.F. Andersen, Thomas Becker, Michael Blau, Monika Anand, Mario Halic, Bharvi Balar, Thorsten Mielke, Thomas Boesen, Jan Skov Pedersen, Christian M.T. Spahn, Terri Goss Kinzy, Gregers R. Andersen, Roland Beckmann, Nature Structural and Molecular Biology, September 2006
Ansprechpartner:
Prof. Dr. Roland Beckmann
Genzentrum und Department für Chemie und Biochemie der LMU
Tel.: 089- 2180 76900
Fax: 089- 2180 76945
E-Mail: beckmann@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Aminosäure E-Stelle Elongationsfaktor Hefe Molekül P-Stelle Proteinsynthese Ribosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics