Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur und Funktion eines dritten Hilfsfaktors für die Proteinsynthese von Pilzen aufgeklärt

24.08.2006
Wissenschaftlerteam gelingen wichtige Einblicke in den Ablauf der Proteinsynthese von Pilzen

Die Herstellung von Proteinen ist eine der wichtigsten Funktionen lebender Organismen und erfolgt in allen Zellen in vergleichbarer Weise. Eine Sonderrolle spielen jedoch die Pilze. Im Gegensatz zu anderen Lebensformen benötigen sie für die Proteinsynthese einen zusätzlichen Hilfsfaktor, der bei keinem anderen Organismus vorkommt. Wissenschaftlern der Charité Berlin, der Universität Aarhus, der Johnson Medical School, New Jersey, der Ludwig-Maximilians-Universität München und des Max-Planck-Instituts für molekulare Genetik ist es jetzt gelungen, die molekulare Struktur dieses zusätzlichen Hilfsfaktors, des Elongationsfaktors eEF3, aufzuklären. In der aktuellen online-Ausgabe der Fachzeitschrift "Nature" beschreiben sie darüber hinaus, in welcher Weise eEF3 bei der Herstellung von Proteinen mit dem Ribosom interagiert. Ihre Ergebnisse sind von großer Bedeutung für das Verständnis der Unterschiede der Proteinsynthese von Pilzen und anderen Organismen und eröffnen den Weg für die Entwicklung einer neuen Klasse von Wirkstoffen und Medikamenten gegen Pilze (Fungizide). [Andersen et al., Structure of eEF3 and the mechanism of tRNA release from the E-site. Nature 2006, doi:10.1038/nature05126]

Nach heutigem Stand des Wissens gehen Wissenschaftler davon aus, dass Proteine ihre Aufgaben in der Regel nur im Verbund mit anderen Proteinen erfüllen können - Forscher sprechen von sogenannten "molekularen Maschinen". Der Prototyp einer molekularen Maschine ist das Ribosom, ein großer Komplex aus Proteinen und RNA-Molekülen, der für die Proteinsynthese der Zelle verantwortlich ist. Wie alle molekularen Maschinen besitzt es nicht nur einen äußerst komplizierten Aufbau, sondern auch sein Betrieb wird in komplexer Art und Weise reguliert. Die Frage nach der Zusammenarbeit der einzelnen Partner gehört zu den großen Herausforderungen der modernen Strukturbiologie.

Bei der Synthese von Proteinen wird die Information der Gene in eine spezifische Abfolge von Aminosäuren, den Grundbausteinen der Proteine, übersetzt. Dies geschieht bei allen Zellen der lebendigen Welt mit zwei Hilfsfaktoren, sogenannten Elongationsfaktoren, die in höheren Organismen als Elongationsfaktor 1A (EF1A) bzw. Elongationsfaktor 2 (EF2), in Bakterien als EF-TU bzw. EF-G bezeichnet werden. Nur bei Pilzen wie beispielsweise der Hefe gibt es einen dritten Hilfsfaktor, den Elongationsfaktor eEF3, ohne den die Pilze nicht überleben können. Zur Entfaltung seiner Aktivität bindet und spaltet eEF3 das energiereiche Molekül ATP. Die genaue Funktion des Faktors, seine Struktur und seine Wechselwirkung mit dem Ribosom waren jedoch bislang ein Rätsel. Einem Wissenschaftlerteam der Charité Berlin, der Universität Aarhus, der Johnson Medical School, New Jersey, der Ludwig-Maximilians-Universität München sowie des Berliner Max-Planck-Instituts für molekulare Genetik ist es jetzt gelungen, die molekulare Struktur dieses Faktors aufzuklären. Mit Hilfe der Kryo-Elektronenmikroskopie konnten die Forscher zeigen, in welcher Weise eEF3 an das aktive Ribosom gebunden wird. Die Wissenschaftler gehen davon aus, dass das an das Ribosom gebundene eEF3 die chemische Energie, die bei der Spaltung des ATP entsteht, dazu nutzt, um den sogenannten L1-Arm des Ribosoms nach außen zu drücken. Dies ermöglicht die Freisetzung der bereits verbrauchten tRNAs, über welche die Aminosäuren an das Ribosom herantransportiert werden. Im nächsten Schritt kann das Ribosom mit einer neuen Aminoacyl-tRNA beladen werden - eine weitere Runde der Proteinsynthese beginnt. Die jetzt veröffentlichten Ergebnisse sind von großer Bedeutung für für das Verständnis der Unterschiede der Proteinsynthese von Pilzen und anderen Organismen und eröffnen den Weg für die Entwicklung einer neuen Klasse von Wirkstoffen und Medikamenten gegen Pilze (Fungizide).

Das Berliner UltraStrukturNetzwerk (USN)

Die Berliner Beiträge zur Aufklärung der Struktur und Funktion des Elongationsfaktors eEF3 erfolgten im Rahmen des UltraStrukturNetzwerkes (USN). Das USN ist ein Projektverbund, der sich zum Ziel gesetzt hat, komplizierte "molekulare Maschinen" mit modernsten Methoden wie Massenspektrometrie (MS) und Kryo-Elektronenmikroskopie (Kryo-EM) zu untersuchen. Der Verbund wurde vom Max-Planck-Institut für molekulare Genetik in Kooperation mit der Charité - Universitätsmedizin Berlin initiiert und vernetzt inzwischen mehr als 15 Arbeitsgruppen in der Region Berlin-Brandenburg. Neben den drei Berliner Universitäten Freier Universität, Technischer Universität und Humboldt-Universität gehören dazu auch das Max-Delbrück-Centrum für Molekulare Medizin, das Leibniz-Institut für Molekulare Pharmakologie (FMP), die Universität Potsdam und das Max-Planck-Institut für molekulare Pflanzenphysiologie in Potsdam.

Mit Unterstützung durch Europäische Fördermittel und der Berliner Senatsverwaltung für Wissenschaft, Forschung und Kultur (Gesamtvolumen: 8 Mio. Euro) wurde im UltraStrukturNetzwerk die technologische Infrastruktur für die Analyse von "molekularen Maschinen" geschaffen. Die Core-Facilities, darunter ein 300 kV Tecnai G2 Polara Kryo-Elektronenmikroskop, sind am Max-Planck-Institut für molekulare Genetik lokalisiert.

Originalveröffentlichung:
Andersen,C.B.F., Becker,T., Blau, M., Anand, M., Halic, M., Balar, B., Mielke, T., Boesen, T., Skov Pedersen, J., Spahn, C.M.T., Goss Kinzy, T., Andersen, G.R., Beckmann, R. Structure of eEF3 and the mechanism of tRNA release from the E-site. Nature 2006, doi:10.1038/nature05126
Weitere Informationen:
Dr. Thorsten Mielke
- UltraStrukturNetzwerk -
Max-Planck-Institut für molekulare Genetik
Ihnestr. 63-73
D-14195 Berlin
Tel.: 030-8413-1644
Email: mielke@molgen.mpg.de
Prof. Dr. Roland Beckmann
Genzentrum der LMU München
Department für Chemie und Biochemie
Feodor-Lynen-Str. 25
81377 München
Tel.: 089-2180-76900
Email: beckmann@lmb.uni-muenchen.de
Beteiligte Arbeitsgruppen:
Prof. G.R. Andersen, Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark

Prof. R. Beckmann, Genzentrum der LMU München, Department für Chemie und Biochemie, Feodor-Lynen-Str. 25, 81377 München

Prof. Terri Goss Kinzy, Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey

Dr. Thorsten Mielke, Max-Planck-Institut für molekulare Genetik, Ihnestr. 63-73, 14195 Berlin

Prof. J.S. Pedersen, Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus, Denmark, and iNANO Interdisciplinary Nanoscience Center, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus, Denmark

Prof. Dr. C.M.T. Spahn, Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Humboldt Universität Berlin, Ziegelstr. 5-9, 10117 Berlin

Dr. Patricia Beziat | idw
Weitere Informationen:
http://www.molgen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie