Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur und Funktion eines dritten Hilfsfaktors für die Proteinsynthese von Pilzen aufgeklärt

24.08.2006
Wissenschaftlerteam gelingen wichtige Einblicke in den Ablauf der Proteinsynthese von Pilzen

Die Herstellung von Proteinen ist eine der wichtigsten Funktionen lebender Organismen und erfolgt in allen Zellen in vergleichbarer Weise. Eine Sonderrolle spielen jedoch die Pilze. Im Gegensatz zu anderen Lebensformen benötigen sie für die Proteinsynthese einen zusätzlichen Hilfsfaktor, der bei keinem anderen Organismus vorkommt. Wissenschaftlern der Charité Berlin, der Universität Aarhus, der Johnson Medical School, New Jersey, der Ludwig-Maximilians-Universität München und des Max-Planck-Instituts für molekulare Genetik ist es jetzt gelungen, die molekulare Struktur dieses zusätzlichen Hilfsfaktors, des Elongationsfaktors eEF3, aufzuklären. In der aktuellen online-Ausgabe der Fachzeitschrift "Nature" beschreiben sie darüber hinaus, in welcher Weise eEF3 bei der Herstellung von Proteinen mit dem Ribosom interagiert. Ihre Ergebnisse sind von großer Bedeutung für das Verständnis der Unterschiede der Proteinsynthese von Pilzen und anderen Organismen und eröffnen den Weg für die Entwicklung einer neuen Klasse von Wirkstoffen und Medikamenten gegen Pilze (Fungizide). [Andersen et al., Structure of eEF3 and the mechanism of tRNA release from the E-site. Nature 2006, doi:10.1038/nature05126]

Nach heutigem Stand des Wissens gehen Wissenschaftler davon aus, dass Proteine ihre Aufgaben in der Regel nur im Verbund mit anderen Proteinen erfüllen können - Forscher sprechen von sogenannten "molekularen Maschinen". Der Prototyp einer molekularen Maschine ist das Ribosom, ein großer Komplex aus Proteinen und RNA-Molekülen, der für die Proteinsynthese der Zelle verantwortlich ist. Wie alle molekularen Maschinen besitzt es nicht nur einen äußerst komplizierten Aufbau, sondern auch sein Betrieb wird in komplexer Art und Weise reguliert. Die Frage nach der Zusammenarbeit der einzelnen Partner gehört zu den großen Herausforderungen der modernen Strukturbiologie.

Bei der Synthese von Proteinen wird die Information der Gene in eine spezifische Abfolge von Aminosäuren, den Grundbausteinen der Proteine, übersetzt. Dies geschieht bei allen Zellen der lebendigen Welt mit zwei Hilfsfaktoren, sogenannten Elongationsfaktoren, die in höheren Organismen als Elongationsfaktor 1A (EF1A) bzw. Elongationsfaktor 2 (EF2), in Bakterien als EF-TU bzw. EF-G bezeichnet werden. Nur bei Pilzen wie beispielsweise der Hefe gibt es einen dritten Hilfsfaktor, den Elongationsfaktor eEF3, ohne den die Pilze nicht überleben können. Zur Entfaltung seiner Aktivität bindet und spaltet eEF3 das energiereiche Molekül ATP. Die genaue Funktion des Faktors, seine Struktur und seine Wechselwirkung mit dem Ribosom waren jedoch bislang ein Rätsel. Einem Wissenschaftlerteam der Charité Berlin, der Universität Aarhus, der Johnson Medical School, New Jersey, der Ludwig-Maximilians-Universität München sowie des Berliner Max-Planck-Instituts für molekulare Genetik ist es jetzt gelungen, die molekulare Struktur dieses Faktors aufzuklären. Mit Hilfe der Kryo-Elektronenmikroskopie konnten die Forscher zeigen, in welcher Weise eEF3 an das aktive Ribosom gebunden wird. Die Wissenschaftler gehen davon aus, dass das an das Ribosom gebundene eEF3 die chemische Energie, die bei der Spaltung des ATP entsteht, dazu nutzt, um den sogenannten L1-Arm des Ribosoms nach außen zu drücken. Dies ermöglicht die Freisetzung der bereits verbrauchten tRNAs, über welche die Aminosäuren an das Ribosom herantransportiert werden. Im nächsten Schritt kann das Ribosom mit einer neuen Aminoacyl-tRNA beladen werden - eine weitere Runde der Proteinsynthese beginnt. Die jetzt veröffentlichten Ergebnisse sind von großer Bedeutung für für das Verständnis der Unterschiede der Proteinsynthese von Pilzen und anderen Organismen und eröffnen den Weg für die Entwicklung einer neuen Klasse von Wirkstoffen und Medikamenten gegen Pilze (Fungizide).

Das Berliner UltraStrukturNetzwerk (USN)

Die Berliner Beiträge zur Aufklärung der Struktur und Funktion des Elongationsfaktors eEF3 erfolgten im Rahmen des UltraStrukturNetzwerkes (USN). Das USN ist ein Projektverbund, der sich zum Ziel gesetzt hat, komplizierte "molekulare Maschinen" mit modernsten Methoden wie Massenspektrometrie (MS) und Kryo-Elektronenmikroskopie (Kryo-EM) zu untersuchen. Der Verbund wurde vom Max-Planck-Institut für molekulare Genetik in Kooperation mit der Charité - Universitätsmedizin Berlin initiiert und vernetzt inzwischen mehr als 15 Arbeitsgruppen in der Region Berlin-Brandenburg. Neben den drei Berliner Universitäten Freier Universität, Technischer Universität und Humboldt-Universität gehören dazu auch das Max-Delbrück-Centrum für Molekulare Medizin, das Leibniz-Institut für Molekulare Pharmakologie (FMP), die Universität Potsdam und das Max-Planck-Institut für molekulare Pflanzenphysiologie in Potsdam.

Mit Unterstützung durch Europäische Fördermittel und der Berliner Senatsverwaltung für Wissenschaft, Forschung und Kultur (Gesamtvolumen: 8 Mio. Euro) wurde im UltraStrukturNetzwerk die technologische Infrastruktur für die Analyse von "molekularen Maschinen" geschaffen. Die Core-Facilities, darunter ein 300 kV Tecnai G2 Polara Kryo-Elektronenmikroskop, sind am Max-Planck-Institut für molekulare Genetik lokalisiert.

Originalveröffentlichung:
Andersen,C.B.F., Becker,T., Blau, M., Anand, M., Halic, M., Balar, B., Mielke, T., Boesen, T., Skov Pedersen, J., Spahn, C.M.T., Goss Kinzy, T., Andersen, G.R., Beckmann, R. Structure of eEF3 and the mechanism of tRNA release from the E-site. Nature 2006, doi:10.1038/nature05126
Weitere Informationen:
Dr. Thorsten Mielke
- UltraStrukturNetzwerk -
Max-Planck-Institut für molekulare Genetik
Ihnestr. 63-73
D-14195 Berlin
Tel.: 030-8413-1644
Email: mielke@molgen.mpg.de
Prof. Dr. Roland Beckmann
Genzentrum der LMU München
Department für Chemie und Biochemie
Feodor-Lynen-Str. 25
81377 München
Tel.: 089-2180-76900
Email: beckmann@lmb.uni-muenchen.de
Beteiligte Arbeitsgruppen:
Prof. G.R. Andersen, Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark

Prof. R. Beckmann, Genzentrum der LMU München, Department für Chemie und Biochemie, Feodor-Lynen-Str. 25, 81377 München

Prof. Terri Goss Kinzy, Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey

Dr. Thorsten Mielke, Max-Planck-Institut für molekulare Genetik, Ihnestr. 63-73, 14195 Berlin

Prof. J.S. Pedersen, Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus, Denmark, and iNANO Interdisciplinary Nanoscience Center, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus, Denmark

Prof. Dr. C.M.T. Spahn, Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Humboldt Universität Berlin, Ziegelstr. 5-9, 10117 Berlin

Dr. Patricia Beziat | idw
Weitere Informationen:
http://www.molgen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise