ETH-Forschende entwickeln ein Detektionssystem für Milzbrand-Sporen

Sporen des gefürchteten Bacillus anthracis wurden bereits als Biowaffe gegen die Zivilbevölkerung eingesetzt. Einmal eingeatmet, führt der Milzbrand-Erreger fast immer zum Tode, wenn die Opfer nicht innerhalb von 24 bis 48 Stunden behandelt werden. Eine rasche zuverlässige Diagnostik ist deshalb lebenswichtig. Nun hat ein Forschungsteam der ETH Zürich zusammen mit dem Schweizer Tropeninstitut und der Universität Bern einen neuen immunologischen Ansatz entwickelt, mit dessen Hilfe Anthrax-Sporen spezifisch erkannt werden.

Unkomplizierter Test für Anthrax fehlte

Verschiedene Testverfahren zur Anthrax-Diagnostik gibt es bereits. Dazu zählen sehr genaue, aber ausgesprochen komplexe, zeitaufwendige und teure genetische Methoden. Immunologische Tests sind dagegen sehr unkompliziert. Bislang gelang es jedoch noch nicht, einen wirklich verlässlichen Immuntest für den Nachweis von Anthrax zu entwickeln. Vor allem bereitete die Ähnlichkeit der Sporen-Oberfläche zu den Sporen anderer Bakterien Probleme: Die bisherigen Anthrax-Antikörper waren nicht spezifisch genug.

Antikörper gegen Zuckerbausteine auf Sporenoberfläche

Vor einiger Zeit wurde ein aus vier Zuckerbausteinen bestehendes Kohlenhydrat auf der Oberfläche von Anthrax-Sporen entdeckt. Für ihren neuen immunologischen Ansatz wählte das Team um Peter H. Seeberger vom ETH-Laboratorium für Organische Chemie diesen Vierfachzucker als Angriffspunkt. Um Antikörper herzustellen, braucht man zunächst das Molekül in ausreichender Menge. Da der Zucker nicht vom tödlichen Bakterium gewonnen werden kann, wählten Prof. Seeberger und Postdoc Daniel Werz eine Alternative: Sie bauten den Vierfachzucker im Labor chemisch nach, knüpften ihn an ein Trägereiweiss und injizierten Mäusen dieses Konjugat. Aus einem der so immunisierten Tiere konnten die Forscher monoklonale Antikörper gewinnen, die ganz spezifisch an Anthrax-Sporen binden. Auf Sporen anderer Bakterien, die bei Menschen häufiger vorkommen und ungefährlich sind, reagieren die Antikörper dagegen nicht.

„Unsere Ergebnisse zeigen, dass kleine, aber feine Unterschiede in den Kohlenhydraten von Zelloberflächen genutzt werden können, um spezifische Immun-Reagenzien zu erhalten,“ sagt Prof. Seeberger. „Unser neuer Antikörper wird als Basis für eine hochempfindliche Anthrax-Diagnostik dienen und zur Entwicklung neuer therapeutischer Ansätze beitragen.“

Weitere Informationen
Prof. Peter H. Seeberger
Laboratorium für Organische Chemie
Telefon +41 (0)44 633 21 03
Seeberger@org.chem.ethz.ch
Literaturangabe
Angewandte Chemie 2006, 118

Media Contact

Beatrice Huber idw

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer