Proteine leuchten rot, wenn sie zusammenarbeiten

Zusammenarbeit in grün und rot: Kölner Wissenschaftler haben mit den beiden Bildern nachgewiesen, dass ihr neu entwickeltes Fluoreszenzprotein (RFP) Protein-Wechselwirkungen in Zellen nachweisen kann. Dafür haben sie das RFP zerteilt und die beiden Hälften an zwei grün fluoreszierende Proteine geheftet, von denen bekannt war, dass sie miteinander wechselwirken. Dadurch vereinigten sich auch die Hälften des RFP, und das Protein leuchtet rot. Bild: Max-Planck-Institut für Züchtungsforschung/Guido Jach

Das Leben in einer Zelle beruht auf dem Zusammenspiel von Proteinen, Genen und kleineren Molekülen. Biologen nennen solch ein Geflecht aus biochemischen Interaktionen ein molekulares Netzwerk. Biologen vom Max-Planck-Institut für Züchtungsforschung und von der Universität zu Köln beobachten jetzt live und in Farbe, welche Eiweiße eine Aufgabe gemeinsam erledigen. Sie haben ein rot fluoreszierendes Protein (RFP) in zwei Teile getrennt, die sie an Proteine heften können. Treten die beiden Proteine miteinander in Wechselwirkung, verbinden sich auch die beiden Hälften des RFP. Das leuchtet anschließend rot – und zwar fünfzehn Mal heller als zuvor, weil die Kölner Biologen das ursprüngliche Protein biochemisch optimiert haben. Dieser Farbstoff hilft den Wissenschaftlern, die Verknüpfungen in dem molekularen Netzwerk zu untersuchen. (Nature Methods, 21. Juli 2006).

Mit der Genomforschung haben sich Biologen in den vergangenen Jahren einen guten Überblick verschafft, mit welchen Genen und Proteinen einzelne Organismen arbeiten. Doch diese Inventarliste reicht noch nicht, um die Prozesse in den Zellen zu verstehen. Denn meistens arbeiten viele Gene und Proteine zusammen, um eine bestimmte Aufgabe zu erfüllen. Zell- und Molekularbiologen möchten nun herausfinden, welche Biomoleküle wann und wie kooperieren.

Wissenschaftler vom Kölner Max-Planck-Institut für Züchtungsforschung und der Universität zu Köln haben jetzt ein weiteres Werkzeug entwickelt, mit dem sie Proteine bei der Zusammenarbeit beobachten können. Die Wissenschaftler um Guido Jach und Joachim Uhrig haben ein verbessertes rot fluoreszierendes Protein (RFP oder in der vollständigen Bezeichnung mRFP1-Q66T) in zwei Teile zerlegt, die einzeln nicht fluoreszieren. Die beiden Hälften finden in einer Zelle auch nicht spontan zueinander, sondern nur wenn sie nahe beieinander festgehalten werden. Etwa, wenn beide an Proteinen hängen, die miteinander interagieren. Dann schließen sich die beiden RFP-Hälften zusammen und leuchten rot. Die rote Fluoreszenz, die ohne die Zellen zu zerstören im Lichtmikroskop beobachtet werden kann, zeigt den Biologen also an, dass zwei entsprechend präparierte Proteine miteinander wechselwirken.

Biologen erforschen die Prozesse in Zellen schon seit einiger Zeit mit fluoreszierenden Proteinen, die sich an andere Proteine hängen lassen und farbig leuchten, wenn sie mit geeignetem Licht angeregt werden. Die neu entwickelte Methode können sie nun mit Systemen kombinieren, die Proteininteraktionen durch gelbes, grünes oder blaues Leuchten nachweisen. Daher können sie in einer Zelle gleichzeitig verfolgen, ob und wie mehrere verschiedene Proteine miteinander in Kontakt treten.

Originalveröffentlichung:

Guido Jach, Martina Pesch, Klaus Richter, Sabine Frings und Joachim F. Uhrig
An improved mRFP1 adds red to bimolecular fluorescence complementation
nature methods, 21. Juli 2006

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer