Neue Perspektiven für Chipproduktion, Chemie und Medizin: "Kletten statt Kleben" von Mikrobauteilen

Die Idee für die innovative Verbundmethode entstand im Rahmen der Promotionsarbeit von Diplomingenieur Mike Stubenrauch. Mit seinem Team aus dem Fachgebiet Mikromechanische Systeme suchte er nach einer Alternative zu den bestehenden Verfahren und fand die Lösung in einer Nadelstruktur im Silizium, die ähnlich einem Klettverschluss funktioniert.

Erzeugt wird die feine Struktur aus Siliziumnadeln durch Aufrauen der Oberfläche des Bauelements. Zu diesem Zweck wird das Silizium mit geladenen Teilchen so lange bombardiert, bis lange, spitze Nadeln entstehen.

Gegeneinander gedrückt, verkeilen sich die Nadeln ineinander und geben den Bauteilen festen Halt. Aufgrund der Ähnlichkeit zu einer Rasenstruktur sprechen die Wissenschaftler auch von Siliziumgras.

Auf einem Quadratmillimeter Chipfläche stehen dabei bis zu 4 Millionen Nadeln, die 20 tausendstel Millimeter lang und nur einen halben Mikrometer breit sind.

Im Experiment wurde die zuverlässige Funktionsfähigkeit der neuen Technologie nachgewiesen. Da die Verbindungsstellen flüssigkeitsdicht sind und zudem leicht gasdicht gemacht werden können, ergeben sich neben der Chipproduktion weitere breite Einsatzmöglichkeiten in Biologie, Chemie und Medizin. So haben die Forscher bereits winzige Behältnisse für chemische oder biologische Reaktionen über eine Nadelstruktur verschlossen. Im Innern solcher Behältnisse können beispielsweise Zellen kultiviert werden. Da der Deckel wieder abgenommen werden kann, ist der direkte Zugang zur Zellkultur möglich.

Die Vorteile gegenüber dem herkömmlichen Verkleben oder Bonden der Bauteile liegen dabei auf der Hand: Anstatt aufwändiger Präparationen der polierten Oberflächen zum Bonden und der in der Regel sehr hohen Temperaturen beim Fügen kann der Klettverschluss bei jeder beliebigen Temperatur bis zu fünf Mal zusammengefügt und wieder gelöst werden, ein Verrutschen der Bauteile wird ausgeschlossen, und die Hersteller können so die immer dünner und empfindlicher werdenden Mikrochips besser und einfacher positionieren.

Auf der Micromechanics Europe Konferenz 2005 in Göteborg wurde die Weltneuheit erstmals einem internationalen Fachpublikum vorgestellt und auf Einladung des internationalen Journal of Micromechanics and Microengineering im Beitrag „Black silicon – new functionalities in microsystems“ (Juni 2006, Bd. 16., S. 82 ff.) beschrieben.

Kontakt/Information:
TU Ilmenau
Fakultät für Maschinenbau
Fachgebiet Mikromechanische Systeme
Dipl.-Ing. Mike Stubenrauch
Tel. 03677 69-1343/ – 69-3425
e-mail: mike.stubenrauch@tu-ilmenau.de
Prof. Dr.-Ing. habil.Martin Hoffmann
Tel.: 03677 69-2487
Fax: 03677 69-1840
e-mai: martin.hoffmann@tu-ilmenau.de

Media Contact

Wilfried Nax M.A. idw

Weitere Informationen:

http://www.tu-ilmenau.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer