Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabiles Bild dank plappernder Nervenzellen

09.08.2006
Warum wir von A nach B sehen können
RUBINinternational ist erschienen

Verantwortlich dafür, dass wir von A nach B sehen können und uns beim Blick aus dem fahrenden Zug heraus nicht übel wird, sind wahrscheinlich Nervenzellen, die pausenlos vor sich in plappern: Sie senden ohne äußeren Anlass Signale in regelmäßiger Folge. Wohin sie "funken" und warum, erforschen die Biologen Nora Prochnow und Dr. Matthias Schmidt. Sie ergründen die Vernetzung der Zellen im Gehirn in Kooperation mit US-amerikanischen Kollegen mit einer neuen Methode, bei der feinste Goldkügelchen entgegen dem Signalweg in den Körper der Nervenzellen wandern und dort anschließend unter dem Mikroskop sichtbar sind. Über ihre Forschungen berichtet sie in RUBINinternational, der aktuellen Ausgabe des Wissenschaftsmagazins der Ruhr-Universität.

Untypische Nervenzellen funken unentwegt

Bei den Augenbewegungen und der Verarbeitung von optischen Reizen spielt ein Bereich des Mittelhirns, der "Nucleus tractus optici" (NTO) eine große Rolle: Er hat die Funktion eines Schaltkastens, der Reize, die über die Sehnerven eingehen, an unterschiedliche Gehirnbereiche weiterleitet. Einige Nervenzellen im NTO zeigen allerdings ein untypisches Verhalten. Anders als "normale" Nervenzellen, die erst nach dem Eingang eines Reizes aktiv werden und elektrische Impulse weitergeben, geben diese Nervenzellen unentwegt scheinbar grundlos Impulse ab. Diese Entdeckung warf für die Forscher sofort Fragen auf: Wohin funken die Zellen und warum?

Sehr stetige Signale wären ersetzbar

Der Frage nach dem Wohin widmete sich Nora Prochnow zuerst. Der NTO ist im Gehirn mit mehreren Gehirnbereichen vernetzt. Um zu untersuchen, in welchen davon die plappernden Zellen ihre Leitungen strecken, wandte sie ein in den USA entwickeltes Verfahren an, bei dem eine Lösung mit sehr kleinen Goldpartikeln in die entsprechenden Hirnbereiche injiziert wird. Die Goldpartikel werden von den Enden der Reizleiter aufgenommen und wandern entgegen der Richtung der elektrischen Impulse bis in den Körper der Nervenzelle zurück. Dort lagern sich die Partikel an und sind als Körnchen unter dem Mikroskop sichtbar. So konnte sie rückschließen, wohin die NTO-Zellen ihre Signale senden. Die elektrische Aktivität der mit Gold markierten Zellen konnte sie außerdem genau messen. Dass die Signale, wie sich dabei herausstellte, sehr stetig abgegeben werden, ist vielleicht eine gute Nachricht für Patienten, deren Bewegungswahrnehmung nach Unfall oder Krankheit gestört ist: Es wäre denkbar, künftig Schrittmachersysteme einzusetzen, die die fehlenden Signale ersetzen. Solche Schrittmacher sind z.B. bei Parkinsonpatienten bereits im Einsatz.

Themen in RUBINinternational

In RUBINinternational finden Sie außerdem folgende Themen: Geisteswissenschaften: Russische Plakatkunst des 20. Jahrhunderts: Werben für die Utopie; Expeditionen in die Welt untergehender Dialekte: Eine Datenbank fürs Ohr; Deutsch-russische Beziehungen im 20. Jahrhundert: In den Wechselbädern der Geschichte; Ingenieurwissenschaften: Neue Wege in der Formgedächtnistechnologie: Haptisches Display und aktive Prothese; Naturwissenschaften: Nutzung geothermaler Ressourcen: Auch ohne sprudelnde Geysire und aktive Vulkane; Die Suche nach kosmischen Teilchenbeschleunigern: Modernste Teleskope "sehen" Hochenergiegammastrahlung; Organische Elektronik optimieren: Wenn Moleküle steuern und schalten. RUBIN ist zum Preis von 2,50 Euro in der Pressestelle der Ruhr-Universität (Tel. 0234/32-22830) erhältlich und steht im Internet unter http://www.rub.de/rubin.

Weitere Informationen

Dipl.-Biol. Nora Prochnow, Allgemeine Zoologie und Neurobiologie, Fakultät für Biologie der Ruhr-Universität Bochum, Tel. 0234/32-27006, E-Mail: nora.prochnow@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.rub.de/rubin

Weitere Berichte zu: NTO Nervenzelle RUBINinternational

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops