Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reißverschluss für Zellmembranen

04.08.2006
Max-Planck-Forscher belegen, dass sich bestimmte Eiweiße in Nervenzellen schnell genug vereinigen, um den Signalaustausch zu ermöglichen

Nervenzellen brauchen nur Millisekunden, um sich zu verständigen. Sie schütten dabei Botenstoffe aus winzigen Vesikeln in die Synapsen aus. Wie sich die Vesikel, die vorher in den Neuronen auf ihren Einsatz warteten, so schnell mit der Zellmembran vereinigen, ist bislang noch nicht völlig geklärt.


Ein Vesikel dockt an der Membran der Nervenzelle an: Die Vierfach-Helix des SNARE-Komplexes, der wie ein biochemischer Reißverschluss wirkt, stellt die Verbindung zwischen den Membranen her. Das Proteine SNAP-25 (grün), das sich zu einem Doppelstrang faltet und das Protein Syntaxin (rot) sind in der Zellmembran verankert. Synaptobrevin (blau) sitzt in der Membran des Vesikels. Bild: MPI für biophysikalische Chemie

Wissenschaftler des Göttinger Max-Planck-Instituts für biophysikalische Chemie haben jetzt aber Belege für einen möglichen Mechanismus gefunden: In einer Art biochemischem Reißverschluss verzahnen sich demnach Proteine auf der Hülle der Vesikel und der Membran der Nervenzellen. Die Göttinger Forscher haben zudem festgestellt, in welcher Richtung sich dieser Reißverschluss zusammenzieht. Nach demselben Prinzip könnten sich auch andere Membranen vereinigen. Zum Beispiel, wenn Proteine vom endoplasmatischen Retikulum, einer zellulären Werkstatt für diverse Biomoleküle, in Vesikeln zum Golgi-Apparat transportiert werden, der die Eiweiße weiterverarbeitet. (Science, 4. August 2006)

Die Biocontainer, die in einer Nervenzellen Botenstoffe in die Kontaktstelle zur Nachbarzelle schütten, ähneln Luftblasen in einem Wasserglas: Die perlen auch zur Oberfläche und kehren dort ihr Inneres nach außen. Die kleinen Bläschen, aus denen Nervenzellen Neurotransmitter in die Synapsen gießen, blubbern jedoch nicht wahllos zur Zelloberfläche, sondern auf Kommando. Das ergibt einen Kalziumüberschuss, der augenblicklich umgesetzt wird. Die Forscher des Max-Planck-Instituts für biophysikalische Chemie könnten jetzt die Debatte beenden, wie sich die Vesikel in wenigen Millisekunden ihres Inhalts entledigen. Als mögliche Akteure in dem Mechanismus gelten schon seit längerem drei Proteine, die Biochemiker als SNARE-Komplex bezeichnen. Eines der Eiweiße sitzt in der Hülle eines Vesikels und zwei in der Membran der Nervenzelle. Kommt das Kalziumsignal, verdrillen sich die drei Proteine zu einem Helixbündel. "Bislang konnten wir nicht simulieren, wie sich die Proteine in Bruchteilen einer Sekunde vereinigen", sagt Dirk Fasshauer, der Leiter der Forschungsgruppe. Die Max-Planck-Forscher sind dabei jetzt einen großen Schritt vorangekommen und liefern so gute Argumente für den biochemischen Reißverschluss. Der war bislang noch umstritten, weil er sich nicht rasch genug schließen ließ.

Das lag, wie die Göttinger Wissenschaftler jetzt herausgefunden haben, aber nicht an dem Mechanismus. Vielmehr hatten sie bei ihren Experimenten Pech: Die zwei Proteine der Zellmembran - Biochemiker nennen sie Syntaxin 1 und SNAP-25 - haben sich vorher schon zu einem Bündel ineinander gedreht. In dieser Spirale soll noch ein Platz frei bleiben, den Synaptobrevin, das Eiweiß der Vesikelmembran, einnehmen kann, sobald das Kalziumsignal kommt. Bislang dauerte dieser Schritt in den Versuchen der Biochemiker jedoch Stunden. Denn das Synaptobrevin musste ein zweites Syntaxinmolekül verdrängen, das sich auf seinen Platz in dem Helixbündel geschoben hatte. Die Max-Planck-Wissenschaftler haben jetzt verhindert, dass sich das zweite Syntaxinproteinen dorthin mogelt, wo das Synaptobrevin hingehört: Sie haben in ihre Versuchslösung ein kurzes Stück des Synaptobrevin gemischt, das als eine Art Platzhalter für das vollständige Molekül diente. Gaben sie nun Synaptobrevin zu ihrem Reaktionsgemisch, ersetzte Synaptobrevin den Platzhalter so schnell, wie es für den Dialog der Nervenzellen nötig ist.

Das klappte jedoch nur, wenn die Wissenschaftler ein bestimmtes Ende des Synaptobrevin als Platzhalter verwendeten und damit auch ein bestimmtes Ende der Spirale blockierten, die Syntaxin 1 und SNAP-25 in der Zellmembran formen. Sie nennen es das C-terminale Ende, weil die Aminosäurenkette hier mit einer Carboxylgruppe endet. Blockierten sie das N-terminale Ende, an dem eine Aminogruppe sitzt, funktionierte der Reißverschluss nicht schnell genug. Damit haben die Biochemiker auch bewiesen, dass sich der Reißverschluss vom N-terminalen zum C-terminalen Ende zusammenzieht. Der Reißverschluss zieht dabei auch die Membranen zueinander. Denn die C-terminalen Enden der Proteine den Membranen zugewandt sind. Lagern sich die Proteine aneinander, rücken daher auch die Membranen zusammen. "Wir verstehen noch nicht genau, wie das Synaptobrevin den Platzhalter verdrängt", sagt Dirk Fasshauer.

Offen ist aber auch noch die Frage, wie der biochemische Reißverschluss in den Nervenzellen selbst funktioniert. So könnte es sein, dass sich nicht nur die beiden Proteine der Zellmembran schon vor dem Kalziumsignal zusammendrehen, sondern auch das Synaptobrevin schon seinen Platz einnimmt. Zumindest teilweise. Dann müsste ein Molekül jedoch dafür sorgen, dass sich die drei Proteine erst nach dem Kalziumsignal völlig ineinander drehen. "Manche Kollegen glauben, dass der Mechanismus nur dann schnell genug ablaufen kann", sagt Fasshauer. Das Molekül, das die Vereinigung der drei Moleküle auf halbem Weg aufhalten könne, sei jedoch noch nicht bekannt. Er favorisiert daher auch eine Version des Reißverschlusses, der nicht schon halb geschlossen auf das Kalziumsignal wartet. "Wir haben jetzt gezeigt, dass sich das Synaptobrevin auch ohne diese Vorbereitung schnell genug an den Komplex der beiden anderen Proteine anlagern kann", so Fasshauer. Möglicherweise muss sogar ein Platzhalter verhindern, dass sich der Reißverschluss vor dem Kalziumsignal zusammenzieht.

Originalveröffentlichung:

Ajaybabu Pobbati, Alexander Stein, Dirk Fasshauer
N- to C-Terminal SNARE Complex Assembly Promotes Rapid Membrane Fusion

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie