Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln mit Öffner

20.07.2006
Max-Planck-Forscher schleusen Mikrokapseln in Tumorzellen ein und setzen ihren Inhalt dort mit einem Laserimpuls gezielt frei

Medikamente helfen am besten, wenn sie direkt in die kranken Organe oder Zellen gelangen - zum Beispiel in Tumorzellen. Wissenschaftler des Potsdamer Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und der Ludwig-Maximilian-Universität München sind diesem Ziel jetzt einen Schritt näher gekommen: Sie haben eine Substanz gezielt in Tumorzellen freigesetzt: Sie haben den Stoff in winzigen Kapseln verpackt, in die Krebszellen geschleust und dort mit einem Laserimpuls wieder ausgepackt. Das Laserlicht hat die Polymerhüllen geknackt, indem es sie aufheizte und so ihre Moleküle aufbrach (Angewandte Chemie, Juli 2006).


Mikrokapseln in einer Zelle vor (a) und nach (b) Laserbelichtung, Der Pfeil gibt den Fokus des Lasers an. Der Laserstrahl öffnet die Kapseln, so dass diese ihren fluoreszierenden Inhalt ausschütten. Bild: MPI für Kolloid- und Grenzflächenforschung

Die Therapie eines bösartigen Tumors ist eine diffizile Angelegenheit: Einerseits müssen Mediziner auch noch den letzten Rest der Geschwulst zerstören, andererseits möchten sie gesundes Gewebe verschonen. So tötet eine Chemotherapie zwar die kranken Zellen ab, richtet aber auch viel Schaden im Körper an. Also suchen Forscher nach Möglichkeiten, nur die wuchernden Zellen zu zerstören. Erreichen könnten sie das zum Beispiel, indem sie die Substanzen mit Mikrokapseln in die Tumorzellen transportieren und dort freisetzen. Die Forscher um André Skirtach und Gleb Sukhorukov vom Potsdamer Max-Planck-Institut für Kolloid- und Grenzflächenforschung und Wolfgang Parak von der Ludwig-Maximilian-Universität München haben jetzt mit einem Laserstrahl gezielt Mikrokapseln geöffnet, die zuvor in eine Tumorzelle eingedrungen waren. Die Kapseln haben ihren Inhalt, eine fluoreszierende Testsubstanz, daraufhin in die Zelle ausgeschüttet. Wie sich der leuchtende Stoff in der Zelle verteilt hat, haben die Wissenschaftler in einem Lichtmikroskop verfolgt.

Als Vehikel diente den Forschern eine Polymerkapsel mit wenigen Mikrometern Durchmesser. Die Wände der Kapseln bauten sie aus mehreren Schichten geladener Polymere auf - immer abwechselnd eine Lage positiv geladener Moleküle und eine Lage negativ geladener. Das ist zumindest im Labor inzwischen eine gängige Methode, um mikroskopische Transportgefäße für Medikamente, Kosmetika oder Nährstoffe herzustellen, die auch durch Zellmembranen hindurchwandern können. André Skirtach und seine Kollegen haben die Kapseln jetzt mit einer Art Sesam-Öffne-Dich ausgerüstet. Dazu brauchen sie allerdings keine Zauberei, sondern Nanopartikel aus Gold- oder Silberatomen. Sie mischen geladene Metallteilchen unter die Moleküle, aus denen sich die Wände der Bläschen zusammensetzen. Sobald die Tumorzellen die Mikrokapseln aufgenommen haben, bestrahlen sie die Transportbehälter mit einem Infrarotlaser. Da die Metallionen die Wärme des Lichts besonders gut aufnehmen und an ihre Umgebung weitergeben, heizen sich die Wände auf. Dabei werden sie so heiß, dass die Bindungen zwischen den Polymeren der Hülle brechen und die Kapseln schließlich aufreißen.

Einstweilen haben die Wissenschaftler die Methode nur an isolierten Tumorzellen erprobt. "Prinzipiell lassen sich so aber auch Wirkstoffe im Körper freisetzen", sagt Helmuth Möhwald, Direktor am Max-Planck-Institut für Kolloid und Grenzflächenforschung und einer der beteiligten Wissenschaftler. Das liegt auch daran, dass das Licht des Infrarotlasers zumindest einen Zentimeter tief ins Gewebe eindringt. Da es dort kaum absorbiert wird, heizen sich auch die Zellen des Körpers kaum auf. Erst die Metallpartikel in den Mikrokapseln nehmen die Wärme auf. Aber auch nur wenn sich die Mikrokapseln in einer Zelle befinden. Denn nur auf sie wirkt der Laser.

Neben dem thermischen Öffner, haben die Potsdamer und Münchner Wissenschaftler auch einen Weg gefunden, um die Kapseln stabiler zu machen. Einfach indem sie die frisch gebildeten Mikrokapseln leicht erhitzen, wobei der Durchmesser der Hohlkugeln schrumpft. Gleichzeitig lagern sich die Moleküle in ihrer Hülle enger aneinander, so dass die Kapselwände dicker werden und ihren Inhalt sicherer bewahren.

Ein wesentliches Problem müssen Wissenschaftler allerdings noch lösen, ehe sie Medikamente mit Mikrokapseln gezielt in Tumorzellen schleusen können. Die Steuerung für die Mikrokapseln fehlt nämlich noch: "Dazu müsste man auf den Kapseln Merkmale anbringen, die nur die Zielzellen erkennen", sagt Helmuth Möhwald. Nur diese Zellen ließen dann die Mikrokapseln durch ihre Membran schlüpfen.

Originalveröffentlichung:

Andre G. Skirtach, Amudena Muñoz Javier, Oliver Kreft, Karen Köhler, Alicia Piera Alberola, Helmuth Möhwald, Wolfgang J. Parak und Gleb B. Sukhorukov

Laser-Induced Release of Encapsulated Materials inside Living Cells

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik