Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulares Recycling von Transportbehältern

20.07.2006
Göttinger Max-Planck-Forscher weisen mit neuer Technik nach, dass Vesikel in Nervenzellen aus Bestandteilen älterer Transportbläschen zusammengebaut werden

Nervenzellen reden miteinander, indem winzige mit Botenstoffen gefüllte Bläschen (Vesikel) an den Kontaktstellen zu Nachbarzellen, den Synapsen, mit der Zellmembran verschmelzen, chemische Botenstoffe freisetzen und so den Nervenimpuls weiterleiten. Doch auf welche Weise die hierbei gestrandeten "Exportbehälter" später wieder verwendet werden, war bisher nicht klar. Mit Hilfe einer neu entwickelten Sonde haben jetzt Forscher des Max-Planck-Instituts für biophysikalische Chemie in Göttingen den Synapsen live "beim Sprechen" zugeschaut. Zu ihrer Überraschung und anders, als bisher angenommen, werden die für die Recyclierung bestimmten Behälter aus Proteinen früherer Export-Behälter zusammengebaut, die bereits als Pool in der Zellmembran gelagert sind. Das erklärt, warum Signalübertragung und Denkprozesse so schnell sein können (Nature Neuroscience, Advanced Online-Publikation, 16. Juli 2006).


Aktive Synapsen, sichtbar gemacht mit einer neuen molekularen Sonde. Sind die Synapsen aktiv, leuchten sie auf. Ist ihre Aufgabe erledigt, gehen auch die Lichter aus. Auf diese Weise konnten Forscher des Max-Planck-Instituts für biophysikalische Chemie den Synapsen "beim Sprechen" zusehen und die Frage klären, wie und wie schnell die Proteine eines synaptischen Vesikels recycelt werden. Bild: Max-Planck-Institut für biophysikalische Chemie


Vesikel kollabieren in die Plasmamembran und verlieren dort ihre Identität. Während neuronaler Aktivität gelangen neue synaptische Vesikelproteine (rot) durch Exocytose in die Außenmembran. Die lompensatorischen Endocytose kann besonders rasch erfolgen, wenn hauptsächlich auf jene Vesikelproteine zurückgegriffen wird, die sich bereits vorsortiert auf der Plasmamembran befinden (grün). Bild: Max-Planck-Institut für biophysikalische Chemie

Stellen Sie sich vor: Ein heißer Sommertag, Sie bringen durstig die leere Wasserkiste zurück zum Getränkemarkt, doch Sie bekommen erst einmal keine neue. Der Händler sagt Ihnen, Sie müssen so lange warten, bis die Flaschen aus Ihrer Kiste gesäubert, frisch befüllt und neu sortiert sind... Glücklicherweise ist das Recyceln der Flaschen schon längst geschehen - zumindest derer, die Sie (oder Ihr Nachbar) schon letzte Woche zurückgebracht haben.

Die Kommunikation zwischen Nervenzellen scheint nach dem gleichen Prinzip zu funktionieren: Signale werden übertragen, indem die eine Zelle Stoffe ausschleust, die an der anderen Zelle eine elekrtrische Antwort auslösen. Die Ausschleusung nennt man Exozytose. Hierbei verschmelzen Vesikel an der Synapse mit der Plasmamembran der Zelle und setzen dabei chemische Botenstoffe, die Neurotransmitter, frei. Dabei gelangen auch die in der Membran des Vesikels enthaltenen Proteine in die Außenmembran der Synapse. Bei der Neubildung von Vesikeln müssen diese Proteine durch einen umgekehrten Vorgang, die Endozytose, wieder zurück gewonnen werden. Die Geschwindigkeit dieses Prozesses ist entscheidend dafür, wie schnell und dauerhaft Synapsen zwischen Nervenzellen bei neuronaler Aktivität funktionieren.

Um die Dynamik dieser Vesikelbausteine zu verfolgen, haben die Max-Planck-Forscher diese durch gentechnische Methoden mit einer Leuchtprotein (GFP)-Domäne markiert und mit Fluoreszenzmikroskopie sichtbar gemacht. Überraschenderweise zeigte sich, dass sich eine gewisse Zahl von Vesikelproteinen, wie etwa Synaptobrevin oder Synaptotagmin, bereits während der Ruhephase der Synapse in der Plasmamembran befindet.

Doch bisher war unklar, ob diese "gestrandeten" Proteine am Recycling der Vesikel teilnehmen, und wenn ja, welche Funktion sie dann ausüben. Hinzu kam ein weiteres Hindernis: Bislang war es nicht möglich, die Dynamik der Proteine im Vesikel getrennt davon zu untersuchen, was mit den in der Plasmamembran gestrandeten Proteine passiert. Mit zwei Tricks gelang den Forschern nun, das Schicksal beider Proteinreservoirs während synaptischer Aktivität getrennt voneinander mikroskopisch zu betrachten und in Echtzeit zu verfolgen.

Zum einen verwendeten die Wissenschaftler ein Leuchtprotein zur Markierung, das nur dann leuchtet, wenn es sich tatsächlich in der Plasmamembran befindet, im Vesikel jedoch unsichtbar bleibt. Zum anderen hatten die Forscher das Leuchtprotein gentechnisch derart verändert, dass es sich durch eine Protease - eine Art molekulare Schere - abschneiden ließ, wenn es sich auf der Plasmamembran befand.

Hierbei zeigte sich nun, dass bei der Endocytose überwiegend beschnittene Synaptobrevin und Synaptotagmin-Moleküle rezykliert wurden, also Moleküle, die schon während der Proteaseeinwirkung in der Plasmamembran lokalisiert waren.

Die Vesikel scheinen also ihre Identität hinsichtlich der Proteinzusammensetzung im Recycling-Zyklus nicht zu behalten. Schlussfolgerung: Die Moleküle in der Plasmamembran bilden vorsortierte Strukturen aus, die bei Bedarf sofort bei Beginn der neuronalen Erregung aufnahmebereit sind. Es muss somit nicht erst auf "Neuankömmlinge" gewartet werden, also auf Moleküle, die während der Exozytose freigesetzt werden, sondern es werden - direkt und schnell - jene Proteine verwendet, die sich im Reservoir der Plasmamembran befinden.

Der unerwartete Befund, dass Vesikel, die durch einen Nervenstimulus erst für die Weitergabe einer Information (Exocytose) verwendet und dann recycelt (Endocytose) werden, nicht dieselben Proteine enthalten, wirft ein völlig neues Licht auf einen über 30 Jahre währenden wissenschaftlichen Disput: Kollabieren alle Vesikel bei der Fusion in die Plasmamembran, und werden ihre Komponenten dann andernorts von so genannten Adaptorproteinen und dem Protein Clathrin wieder gesammelt und endocytiert? Oder gehen Vesikel nur eine kurzzeitige Liason mit der Plasmamembran über eine Fusionspore ein, durch die der Botenstoff freigesetzt werden kann ("Kiss and Run"-Mechanismus)?

Die neuen Forschungsergebnisse legen nun nahe, dass Vesikel - entgegen bisheriger Annahmen - immer in die Plasmamembran kollabieren und dort ihre Identität verlieren. Da aber die molekulare Identität das wesentliche Merkmal und der entscheidende Vorteil eines "Kiss and Run"-Mechanismus ist, scheidet dieser Mechanismus damit für ein effektives Recycling klar aus. Statt der neu in die Plasmamembran integrierten Vesikelproteine werden offenbar immer andere, bei früheren Stimulationen bereits gestrandete Moleküle am Rande der Freisetzungszone in einem Membranfleck mit Hilfe der Clathrin-Maschinerie vorsortiert, konzentriert und für die Endozytose bereit gestellt. Die Zelle verfügt also über einen vorsortierten bzw. leicht zurück gewinnbaren Pool an benötigten Proteinen.

Auf diese Weise wird einerseits verhindert, dass die Membran der Synapse übermäßig anschwillt, andererseits wird sichergestellt, dass ständig ausreichend neue Vesikel zur Verfügung stehen. Vesikel werden also immer wieder neu zusammengesetzt. Tatsächlich deutet viel daraufhin, dass auch bei der Neubildung einer Synapse die zugehörigen Vesikel de novo aus dem gestrandeten Pool von Proteinen an der Plasmamembran gebildet werden.

Die neuen Befunde legen somit nahe, dass sich in der Evolution ein molekularer Mechanismus durchgesetzt hat, der sowohl die Neusynthese als auch das Recycling synaptischer Vesikel regelt.

Doch wenn die frisch freigesetzten Proteine nicht ihre eigene Rücknahme durch Endocytose triggern, welches Signal koppelt dann mit so erstaunlicher Präzision die Exocytose und kompensatorische Endocytose von neu ‚erfundenen’ Vesikeln? Dieser Frage wollen sich die Forscher nun als nächstes zuwenden.

Originalveröffentlichung:

Martin Wienisch& Jurgen Klingauf
Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical

Nature Neuroscience, Advanced Online Publication, 16 July 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Botenstoff Endocytose Molekül Nervenzelle Plasmamembran Protein Recycling Synapse Vesikel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie