Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenaer Chemiker spazieren durch die molekulare Landschaft

18.07.2006
Wissenschaftler der Universität Jena auf der Suche nach neuen Wirkstoffen gegen Infektionen

Neue Medikamente gegen Bakterien sind heute wichtiger denn je. Immer mehr Krankheitserreger erweisen sich als unempfindlich gegen bisher angewandte Arzneimittel. Um neue wirksame Therapien zu entwickeln, ist es allerdings unerlässlich, die möglichen Angriffspunkte für die Wirkstoffe auf der Oberfläche der die Infektion verursachenden Bakterienzellen zu kennen. Diesem Ziel sind Physikochemiker der Universität Jena einen entscheidenden Schritt näher gekommen.

Prof. Dr. Jürgen Popp und seine Mitarbeiterin Ute Neugebauer kombinieren dazu in Zusammenarbeit mit einer Arbeitsgruppe um Dr. Volker Deckert vom Dortmunder Institute for Analytical Sciences (ISAS) die Raman-Spektroskopie mit einem Rasterkraft-Mikroskop. Damit erhalten sie gleichzeitig chemische und räumliche Informationen über die Bakterienoberfläche mit einer Auflösung von wenigen Nanometern (Ein Nanometer entspricht einem Milliardstel Meter. Der Durchmesser eines Haares ist im Vergleich dazu etwa 50.000 Mal größer). So können die beiden Wissenschaftler untersuchen, welche chemischen Strukturen sich auf der Oberfläche befinden und wie sie angeordnet sind. Da solche Strukturen mögliche Angriffsstellen für Arzneiwirkstoffe darstellen, sind diese Informationen von großem Wert. Die Ergebnisse der Jenaer Physikochemiker sind in der jüngsten Ausgabe der renommierten Fachzeitschrift "ChemPhysChem" erschienen.

Als Untersuchungsbeispiel diente Popp und Neugebauer der Mikroorganismus Staphylococcus epidermidis, der natürlicherweise auf unserer Haut und unseren Schleimhäuten lebt. Zum Problem wird dieser Keim für Menschen, deren Immunsystem geschwächt ist, zum Beispiel nach einer Operation. Besonders häufig treten Staphylococcus epidermidis-Infektionen an Implantaten wie künstlichen Herzklappen und Gelenken oder Herzschrittmachern auf.

Die Hülle der Bakterien stellt einen komplizierten Aufbau aus Zucker- und Eiweißmolekülen dar. Um deren Anordnung genau studieren zu können, benötigten die Jenaer Forscher keine Markierungen oder ähnliches, sondern konnten sich ganz auf die Sensitivität ihrer TERS (Tip-enhanced Raman spectroscopy; zu deutsch: Spitzen-verstärkte Raman-Spektroskopie) genannten Methode verlassen. "Noch stehen wir mit diesen Arbeiten relativ am Anfang, aber wenn wir das Verfahren weiterentwickelt haben, wird es möglich sein, quasi auf der Bakterienoberfläche spazieren zu gehen und sich die molekulare ,Landschaft' dort anzuschauen", beschreibt Prof. Popp, der auch Direktor des Institutes für Physikalische Hochtechnologie auf dem Beutenberg ist, die weiteren Ziele des Projektes und ergänzt: "Außerdem werden wir in der Lage sein, die Wechselwirkungen der Krankheitserreger mit den Zellen des Menschen und den Wirkstoffen der Arzneimittel zu untersuchen."

Die Raman-Spektroskopie beruht auf der Wechselwirkung von Licht und Materie: Bestrahlt man Moleküle mit Licht, so wird dieses in ganz charakteristischer Weise gestreut. Man erhält so Informationen über die Schwingungen eines Moleküls, deren Streuungsmuster eine Art Fingerabdruck liefern, der eindeutig dem Molekül zuzuordnen ist. Das Rasterkraft-Mikroskop wiederum erlaubt die mechanische Abtastung von Oberflächen. Es besteht aus einer sehr feinen Spitze auf einer Blattfeder. Diese Spitze wird über die zu untersuchende Oberfläche gezogen und dabei wird die Verzerrung der Blattfeder, die die Oberflächenstrukturen widerspiegelt, optisch mit Hilfe eines Laserstrahls registriert. Dies reicht aus, um sogar einzelne Atome abbilden zu können. Damit hat das Rasterkraft-Mikroskop neben dem Rastertunnel-Mikroskop die höchste Auflösung aller mikroskopischen Techniken.

"Wir haben diese beiden Methoden erstmals zur Untersuchung komplexer biologischer Systeme miteinander kombiniert", erläutert Popp. Diese Verknüpfung erlaube es, die "Landschaft" Bakterienoberfläche nicht nur auf Hügel und Täler hin zu untersuchen, sondern auch, ihre genaue chemische Zusammensetzung zu analysieren. "Wir klären damit die zwei entscheidenden Fragen -,Was' und ,Wo' - in einem Arbeitsschritt", so Popp.

Ansprechpartner:
Dipl.-Chem. Ute Neugebauer / Prof. Dr. Jürgen Popp
Institut für Physikalische Chemie der Universität Jena
Helmholtzweg 4, 07743 Jena
Tel.: 03641 / 948351
Fax: 03641 / 948302
E-Mail: ute.neugebauer[at]uni-jena.de / juergen.popp[at]uni-jena.de
Originalpublikation:
Neugebauer et al, On the Way to Nanometer-Sized Information of the Bacterial Surface by Tip-Enhanced Raman Spectroscopy, ChemPhysChem 2006, 7, 1428-1430

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipc.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise