Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Kompass im Auge

11.07.2006
Eine Forschergruppe um Dr. Henrik Mouritsen und Professor Reto Weiler von der Universität Oldenburg hat in der Netzhaut von Zugvögeln spezielle Sehpigmente entdeckt, die den Tieren die Orientierung bei Nacht zu ermöglichen scheint. "Diese Cryptochrome vermitteln den Vögeln eine Art "virtuelles Bild" von der Ausrichtung des Magnetfeldes der Erde", berichtet Mouritsen auf dem Forum der europäischen Neurowissenschaften FENS 2006 am 11. Juli in Wien.

Zugvögel legen jährlich tausende von Kilometern zurück, überqueren Kontinente, wenn sie zwischen Sommer- und Winterquartier wechseln. Die Tiere müssen sich auf ihrer langen Reise orientieren: sie fliegen bei Tag und in der Nacht, bei bedecktem Himmel, bei Sonnenschein, über Meere und Gebirge hinweg. Die Zugvögel orientieren sich dabei am Stand der Sonne und am Magnetfeld der Erde.

Dem Sitz dieser geheimnisvolle Magnetsinn ist ein Forscherteam am Institut für Biologie und Umweltwissenschaften der Universität Oldenburg näher gekommen. Ebenso gelang es der Forschergruppe um Dr. Henrik Mouritsen gemeinsam mit amerikanischen Kollegen, ein Gehirnareal zu lokalisieren, das nur nachts aktiv ist und anscheinend die nächtliche Navigation von Zugvögeln koordiniert.

"Bei unseren Versuchen konnten wir zeigen", so Mouritsen, "dass diese Moleküle dann bei Zugvögeln vorhanden sind, wenn das magnetische Steuersystem benötigt wird. Wir haben auch festgestellt, dass die Zellen, in denen diese Cryptochrome aktiv sind, während des magnetgesteuerten Orientierungsverhaltens mit dem Gehirn kommunizieren." Im Gehirn der Tiere entdeckten die Forscher darüber hinaus ein Gehirnareal, wo diese Informationen aus der Netzhaut vermutlich verarbeitet werden.

In Versuchen mit der Gartengrasmücke in speziell angefertigten Käfigen hatte das Oldenburger Team festgestellt, dass der heimische Singvogel, wenn er dem natürlichen Magnetfeld der Erde ausgesetzt war, etwa einmal pro Minute den Kopf zur Seite bewegte. Spürte er das Magnetfeld der Erde nicht mehr, nahm dieses Kopfschütteln deutlich zu. Die Wissenschaftler folgerten daraus, dass Zugvögel ihren Kompass im Kopf tragen und nach einem magnetischen Orientierungsmuster suchen, indem sie den Kopf bewegen.

Bestimmte Photorezeptoren in der Netzhaut der Vögel, so genannte Cryptochrome, reagieren auf das Magnetfeld. Diese besonderen Sehpigmente werden durch blaues und grünes Licht aktiviert und offensichtlich auch durch das Magnetfeld beeinflusst. Vier Vertreter der Cryptomchrom-Familie haben die Wissenschaftler um Mouritsen in der Netzhaut der Vögel identifiziert. Die Sehpigmente ermöglichen den Zugvögeln die "virtuelle Sicht" des Magnetfeldes der Erde, so die Hypothese der Forscher. "Man muss sich das vorstellen wie eine vermutlich schwarz-weiße Zielscheibe ohne Ringe", erklärt der dänische Wissenschaftler, "deren Helligkeit die Nord-Südachse widerspiegelt."

"CRY1 fanden wir bei der Gartengrasmücke in Photorezeptoren und Ganglienzellen der Netzhaut, welche vor allem nachts aktiv waren, wenn die Vögel ihre magnetische Flugsteuerung nutzten." Auch der Vergleich mit nicht wandernden Singvögeln unterstützt die Bedeutung von CRY1 für die Navigation: die Ganglienzellen in der Retina der Gartengrasmücke produzieren Tag und Nacht große Mengen des Moleküls, die Netzhaut der nichtwandernden Zebrafinken hingegen nicht.

Wo im Gehirn werden die Informationen aus der Retina über das Magnetfeld der Erde verarbeitet? Auch diese Frage scheinen die Wissenschaftler um Mouritsen inzwischen beantworten zu können. Bei nachtwandernden Zugvögeln entdeckten Sie ein Gehirnareal, das nur nachts aktiv war. (Dazu hatten die Forscher die Aktivität bestimmter Gene bestimmt.) Bei Singvögeln, die nachts nicht wandern, konnten sie diesen als "Cluster N" (N für Nacht-Aktivierung) bezeichneten Gehirnbereich hingegen nicht finden.

Auch bei den Zugvögeln schaltete sich dieser Bereich aus, sobald man den Tieren Augenklappen aufsetzte. Cluster N besteht aus mehreren Regionen und liegt in einem Bereich, wo im Vogelhirn Informationen vom Auge verarbeitet werden.

"Wir folgern daraus", so Mouritsen, "dass Cluster N vermutlich die visuellen Wahrnehmungen mit dem Magnetsinn und der Sternenorientierung koppelt und so für das präzise Navigationssystem der Vögel im Nachtflug zuständig ist."

ABSTRAKT Nr. S38.4

Notes to Editors
Das Forum 2006 der Federation of European Neuroscience Societies (FENS) wird veranstaltet von der Österreichischen Gesellschaft für Neurowissenschaften und der Deutschen Neurowissenschaftlichen Gesellschaft. An der Tagung nehmen über 5000 Neurowissenschaftler teil. Die FENS wurde 1998 gegründet mit dem Ziel, Forschung und Ausbildung in den Neurowissenschaften zu fördern sowie die Neurowissenschaften gegenüber der Europäischen Kommission und anderen Drittmittelgebern zu vertreten. FENS ist der Europäische Partner der Amerikanischen Gesellschaft für Neurowissenschaften (American Society for Neuroscience). Die FENS vertritt eine große Zahl europäischer neurowissenschaftlicher Gesellschaften und hat rund 16 000 Mitglieder.
Pressestelle während der Tagung:
Austria Center Wien
Raum U 557
Tel.: ++43-(0)1-26069-2025
8. - 12. Juli 2006
Nach der Tagung:
Österreich, Schweiz, Deutschland
Barbara Ritzert
ProScience Communications
Andechser Weg 17, D-82343 Pöcking
Tel.: ++49-(0)8157-9397-0
Fax: ++49-(0)8157-9397-97
ritzert@proscience-com.de

Barbara Ritzert | idw
Weitere Informationen:
http://awmf.org
http://fens2006.neurosciences.asso.fr/

Weitere Berichte zu: Magnetfeld Netzhaut Neurowissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Maßgeschneiderte Nanopartikel gegen Krebs gesucht
29.06.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Elektrisch leitende Hülle für Bakterien
29.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften

Wellen schlagen

29.06.2017 | Informationstechnologie