Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Kompass im Auge

11.07.2006
Eine Forschergruppe um Dr. Henrik Mouritsen und Professor Reto Weiler von der Universität Oldenburg hat in der Netzhaut von Zugvögeln spezielle Sehpigmente entdeckt, die den Tieren die Orientierung bei Nacht zu ermöglichen scheint. "Diese Cryptochrome vermitteln den Vögeln eine Art "virtuelles Bild" von der Ausrichtung des Magnetfeldes der Erde", berichtet Mouritsen auf dem Forum der europäischen Neurowissenschaften FENS 2006 am 11. Juli in Wien.

Zugvögel legen jährlich tausende von Kilometern zurück, überqueren Kontinente, wenn sie zwischen Sommer- und Winterquartier wechseln. Die Tiere müssen sich auf ihrer langen Reise orientieren: sie fliegen bei Tag und in der Nacht, bei bedecktem Himmel, bei Sonnenschein, über Meere und Gebirge hinweg. Die Zugvögel orientieren sich dabei am Stand der Sonne und am Magnetfeld der Erde.

Dem Sitz dieser geheimnisvolle Magnetsinn ist ein Forscherteam am Institut für Biologie und Umweltwissenschaften der Universität Oldenburg näher gekommen. Ebenso gelang es der Forschergruppe um Dr. Henrik Mouritsen gemeinsam mit amerikanischen Kollegen, ein Gehirnareal zu lokalisieren, das nur nachts aktiv ist und anscheinend die nächtliche Navigation von Zugvögeln koordiniert.

"Bei unseren Versuchen konnten wir zeigen", so Mouritsen, "dass diese Moleküle dann bei Zugvögeln vorhanden sind, wenn das magnetische Steuersystem benötigt wird. Wir haben auch festgestellt, dass die Zellen, in denen diese Cryptochrome aktiv sind, während des magnetgesteuerten Orientierungsverhaltens mit dem Gehirn kommunizieren." Im Gehirn der Tiere entdeckten die Forscher darüber hinaus ein Gehirnareal, wo diese Informationen aus der Netzhaut vermutlich verarbeitet werden.

In Versuchen mit der Gartengrasmücke in speziell angefertigten Käfigen hatte das Oldenburger Team festgestellt, dass der heimische Singvogel, wenn er dem natürlichen Magnetfeld der Erde ausgesetzt war, etwa einmal pro Minute den Kopf zur Seite bewegte. Spürte er das Magnetfeld der Erde nicht mehr, nahm dieses Kopfschütteln deutlich zu. Die Wissenschaftler folgerten daraus, dass Zugvögel ihren Kompass im Kopf tragen und nach einem magnetischen Orientierungsmuster suchen, indem sie den Kopf bewegen.

Bestimmte Photorezeptoren in der Netzhaut der Vögel, so genannte Cryptochrome, reagieren auf das Magnetfeld. Diese besonderen Sehpigmente werden durch blaues und grünes Licht aktiviert und offensichtlich auch durch das Magnetfeld beeinflusst. Vier Vertreter der Cryptomchrom-Familie haben die Wissenschaftler um Mouritsen in der Netzhaut der Vögel identifiziert. Die Sehpigmente ermöglichen den Zugvögeln die "virtuelle Sicht" des Magnetfeldes der Erde, so die Hypothese der Forscher. "Man muss sich das vorstellen wie eine vermutlich schwarz-weiße Zielscheibe ohne Ringe", erklärt der dänische Wissenschaftler, "deren Helligkeit die Nord-Südachse widerspiegelt."

"CRY1 fanden wir bei der Gartengrasmücke in Photorezeptoren und Ganglienzellen der Netzhaut, welche vor allem nachts aktiv waren, wenn die Vögel ihre magnetische Flugsteuerung nutzten." Auch der Vergleich mit nicht wandernden Singvögeln unterstützt die Bedeutung von CRY1 für die Navigation: die Ganglienzellen in der Retina der Gartengrasmücke produzieren Tag und Nacht große Mengen des Moleküls, die Netzhaut der nichtwandernden Zebrafinken hingegen nicht.

Wo im Gehirn werden die Informationen aus der Retina über das Magnetfeld der Erde verarbeitet? Auch diese Frage scheinen die Wissenschaftler um Mouritsen inzwischen beantworten zu können. Bei nachtwandernden Zugvögeln entdeckten Sie ein Gehirnareal, das nur nachts aktiv war. (Dazu hatten die Forscher die Aktivität bestimmter Gene bestimmt.) Bei Singvögeln, die nachts nicht wandern, konnten sie diesen als "Cluster N" (N für Nacht-Aktivierung) bezeichneten Gehirnbereich hingegen nicht finden.

Auch bei den Zugvögeln schaltete sich dieser Bereich aus, sobald man den Tieren Augenklappen aufsetzte. Cluster N besteht aus mehreren Regionen und liegt in einem Bereich, wo im Vogelhirn Informationen vom Auge verarbeitet werden.

"Wir folgern daraus", so Mouritsen, "dass Cluster N vermutlich die visuellen Wahrnehmungen mit dem Magnetsinn und der Sternenorientierung koppelt und so für das präzise Navigationssystem der Vögel im Nachtflug zuständig ist."

ABSTRAKT Nr. S38.4

Notes to Editors
Das Forum 2006 der Federation of European Neuroscience Societies (FENS) wird veranstaltet von der Österreichischen Gesellschaft für Neurowissenschaften und der Deutschen Neurowissenschaftlichen Gesellschaft. An der Tagung nehmen über 5000 Neurowissenschaftler teil. Die FENS wurde 1998 gegründet mit dem Ziel, Forschung und Ausbildung in den Neurowissenschaften zu fördern sowie die Neurowissenschaften gegenüber der Europäischen Kommission und anderen Drittmittelgebern zu vertreten. FENS ist der Europäische Partner der Amerikanischen Gesellschaft für Neurowissenschaften (American Society for Neuroscience). Die FENS vertritt eine große Zahl europäischer neurowissenschaftlicher Gesellschaften und hat rund 16 000 Mitglieder.
Pressestelle während der Tagung:
Austria Center Wien
Raum U 557
Tel.: ++43-(0)1-26069-2025
8. - 12. Juli 2006
Nach der Tagung:
Österreich, Schweiz, Deutschland
Barbara Ritzert
ProScience Communications
Andechser Weg 17, D-82343 Pöcking
Tel.: ++49-(0)8157-9397-0
Fax: ++49-(0)8157-9397-97
ritzert@proscience-com.de

Barbara Ritzert | idw
Weitere Informationen:
http://awmf.org
http://fens2006.neurosciences.asso.fr/

Weitere Berichte zu: Magnetfeld Netzhaut Neurowissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics