Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Starrheit flexibel bleiben - Zelluläre Stützstrukturen vielseitiger als vermutet

04.07.2006
Mikrotubuli sind langgestreckte, röhrenförmige Strukturen in der Zelle. Als wichtiger Bestandteil des so genannten Zytoskeletts stützen sie die Zelle, in der sie aber auch Transportvorgänge und andere Funktionen ermöglichen.

Ein internationales Forscherteam, dem auch Professor Dr. Erwin Frey, Lehrstuhl für theoretische Physik an der Ludwig-Maximilians-Universität (LMU) München angehört, konnte jetzt zeigen, dass Mikrotubuli bei zunehmender Länge steifer werden, wie die Autoren in der Online-Ausgabe von PNAS, den "Proceedings of the National Academy of Sciences", berichten. Diese unerwartete Eigenschaft könnte bei der Entwicklung von Nanomaterialen genutzt werden, führt aber auch zu einem besseren Verständnis der Funktion von Mikrotubuli in der Zelle. Die Arbeit wurde von Forschern der LMU, des "European Molecular Biology Laboratory" (EMBL) in Heidelberg und der University of Texas in Austin durchgeführt.

Tubulin ist eines der häufigsten Proteine in der Zelle. Bei Bedarf lagern sich diese Einheiten aneinander, um Mikrotubuli zu bilden, die in der Länge stark variieren. Ihre wichtigste Aufgabe erfüllen diese als eines von mehreren fadenförmigen Filamenten des Zytoskeletts. Dieses außerordentlich flexible Netzwerk aus Proteinen stabilisiert die Zelle und deren äußere Form. Mikrotubuli sind auch nötig für die Bewegung mancher Zellen, und dienen als Transportwege für zelluläre Frachten. Mikrotubuli haben einen Durchmesser von 25 Nanometer, also Millionstel Millimeter, und sind damit die dicksten Filamente des Zytoskeletts. "Wir haben jetzt zu unserer eigenen Überraschung festgestellt, dass sie mit zunehmender Länge starrer werden", so Frey. "Das stellt die bisherigen Ansichten über die mechanischen Eigenschaften der Mikrotubuli völlig auf den Kopf."

Die Wissenschaftler in Austin und Heidelberg untersuchten die Steifheit und Länge zellulärer Mikrotubuli mit Hilfe so genannter "single-particle tracking"-Techniken. Damit wird die Bewegung individueller, mikroskopisch kleiner Teilchen verfolgt, die selbst wiederum an die eigentlich interessanten Moleküle oder Proteine gebunden sind. In diesem Fall hängten die Forscher an die Spitzen unterschiedlich langer Mikrotubuli jeweils eine fluoreszierende Perle. Dieses Filamentende war frei in Flüssigkeit beweglich, während das andere fixiert war. Die Bewegung der Perlen wurde verfolgt und analysiert, so dass über diese Werte auf die Steifheit der einzelnen Mikrotubuli rückgeschlossen werden konnte.

Die von Erwin Frey und seinen Mitarbeitern durchgeführte mathematische Analyse zeigte dann, dass die einzigartigen Eigenschaften der Mikrotubuli auf deren biologische Konstruktion zurückzuführen sind. Die Filamente sind aus einzelnen Tubulin-Proteinen aufgebaut, die so aneinander binden, dass die Mikrotubuli flexibel und steif sein können. "Die Flexibilität ist wichtig für die Mikrotubuli, wenn sie wachsen und sich in der Zelle verändern", so Frey. "Eine gewisse Starrheit ist aber nötig, wenn die Zelle gestützt werden muss." Mikrotubuli sind damit optimal für ihren Einsatz gerüstet: Sie bieten ein Maximum an mechanischer Stabilität bei minimalen Kosten für die Zelle. Sie können extrem gebogen werden, ohne dabei zu brechen oder zu kollabieren. "Das ist aber ein universelles Konstruktionsprinzip", so Frey. "Es kommt auch bei anderen hierarchisch aufgebauten, faserartigen Strukturen in biologischen Systemen zur Anwendung."

Ansprechpartner:

Professor Dr. Erwin Frey
Statistische und Biologische Physik am Arnold Sommerfeld Center
for Theoretical Physics der LMU
Tel.: 089-2180-4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Filamente Mikrotubuli Protein Zelle Zytoskeletts

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe
13.12.2017 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungsnachrichten

Neue Wirkstoffe aus dem Baukasten: Design und biotechnologische Produktion neuer Peptid-Wirkstoffe

13.12.2017 | Biowissenschaften Chemie

Analyse komplexer Biosysteme mittels High-Performance-Computing

13.12.2017 | Informationstechnologie