Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Starrheit flexibel bleiben - Zelluläre Stützstrukturen vielseitiger als vermutet

04.07.2006
Mikrotubuli sind langgestreckte, röhrenförmige Strukturen in der Zelle. Als wichtiger Bestandteil des so genannten Zytoskeletts stützen sie die Zelle, in der sie aber auch Transportvorgänge und andere Funktionen ermöglichen.

Ein internationales Forscherteam, dem auch Professor Dr. Erwin Frey, Lehrstuhl für theoretische Physik an der Ludwig-Maximilians-Universität (LMU) München angehört, konnte jetzt zeigen, dass Mikrotubuli bei zunehmender Länge steifer werden, wie die Autoren in der Online-Ausgabe von PNAS, den "Proceedings of the National Academy of Sciences", berichten. Diese unerwartete Eigenschaft könnte bei der Entwicklung von Nanomaterialen genutzt werden, führt aber auch zu einem besseren Verständnis der Funktion von Mikrotubuli in der Zelle. Die Arbeit wurde von Forschern der LMU, des "European Molecular Biology Laboratory" (EMBL) in Heidelberg und der University of Texas in Austin durchgeführt.

Tubulin ist eines der häufigsten Proteine in der Zelle. Bei Bedarf lagern sich diese Einheiten aneinander, um Mikrotubuli zu bilden, die in der Länge stark variieren. Ihre wichtigste Aufgabe erfüllen diese als eines von mehreren fadenförmigen Filamenten des Zytoskeletts. Dieses außerordentlich flexible Netzwerk aus Proteinen stabilisiert die Zelle und deren äußere Form. Mikrotubuli sind auch nötig für die Bewegung mancher Zellen, und dienen als Transportwege für zelluläre Frachten. Mikrotubuli haben einen Durchmesser von 25 Nanometer, also Millionstel Millimeter, und sind damit die dicksten Filamente des Zytoskeletts. "Wir haben jetzt zu unserer eigenen Überraschung festgestellt, dass sie mit zunehmender Länge starrer werden", so Frey. "Das stellt die bisherigen Ansichten über die mechanischen Eigenschaften der Mikrotubuli völlig auf den Kopf."

Die Wissenschaftler in Austin und Heidelberg untersuchten die Steifheit und Länge zellulärer Mikrotubuli mit Hilfe so genannter "single-particle tracking"-Techniken. Damit wird die Bewegung individueller, mikroskopisch kleiner Teilchen verfolgt, die selbst wiederum an die eigentlich interessanten Moleküle oder Proteine gebunden sind. In diesem Fall hängten die Forscher an die Spitzen unterschiedlich langer Mikrotubuli jeweils eine fluoreszierende Perle. Dieses Filamentende war frei in Flüssigkeit beweglich, während das andere fixiert war. Die Bewegung der Perlen wurde verfolgt und analysiert, so dass über diese Werte auf die Steifheit der einzelnen Mikrotubuli rückgeschlossen werden konnte.

Die von Erwin Frey und seinen Mitarbeitern durchgeführte mathematische Analyse zeigte dann, dass die einzigartigen Eigenschaften der Mikrotubuli auf deren biologische Konstruktion zurückzuführen sind. Die Filamente sind aus einzelnen Tubulin-Proteinen aufgebaut, die so aneinander binden, dass die Mikrotubuli flexibel und steif sein können. "Die Flexibilität ist wichtig für die Mikrotubuli, wenn sie wachsen und sich in der Zelle verändern", so Frey. "Eine gewisse Starrheit ist aber nötig, wenn die Zelle gestützt werden muss." Mikrotubuli sind damit optimal für ihren Einsatz gerüstet: Sie bieten ein Maximum an mechanischer Stabilität bei minimalen Kosten für die Zelle. Sie können extrem gebogen werden, ohne dabei zu brechen oder zu kollabieren. "Das ist aber ein universelles Konstruktionsprinzip", so Frey. "Es kommt auch bei anderen hierarchisch aufgebauten, faserartigen Strukturen in biologischen Systemen zur Anwendung."

Ansprechpartner:

Professor Dr. Erwin Frey
Statistische und Biologische Physik am Arnold Sommerfeld Center
for Theoretical Physics der LMU
Tel.: 089-2180-4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Filamente Mikrotubuli Protein Zelle Zytoskeletts

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften