Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationale Kooperation für die kleinen biomedizinischen Revolutionen

28.06.2006
Fraunhofer IZM und University of Utah erarbeiten gemeinsam ein neuronales Interface

Armprothesen, die von ihren natürlichen Originalen kaum zu unterscheiden sind oder Nervenzellen, die sich im Falle ihrer Beschädigung überbrücken lassen - was wie Science Fiction anmutet, ist für die Forscher des Berliner Fraunhofer IZM und der University of Utah bereits Realität.


Das mikroelektronische Modul basiert auf dem an der Universität Utah entwickelten Neurostecker, der mittels Siliziumtechnologie hergestellt wird. Auf diesem werden die aktiven und passiven Bauteile aufgelötet bzw. aufgeklebt. Der modulare Aufbau gestattet eine hohe Flexibilität bei der Entwicklung von verschiedenen neuen biomedizinischen Anwendungen. Fraunhofer IZM/ A. Okulla

Und dabei müssen große Entfernungen für die anwendungsnahe Forschung nicht unbedingt hinderlich sein. Im Gegenteil. Unterschiedliche Umgebungsbedingungen und Synergieeffekte entzünden mitunter eine beeindruckende Innovationskraft. Das zumindest beweist diese transatlantische Kooperation der renommierten Forschungseinrichtungen, die nach bereits erfolgreicher Projektpartnerschaft in Sachen Mikrosystemtechnik nun gemeinsame Wege gehen.

Mit der Fokussierung auf die Heterosystemintegration für biomedizinische Anwendungen bedienen beide Kooperationspartner v.a. zukünftige Packaging-Trends. Die Basis hierfür liefern überaus erfolgreiche Konzepte für dauerhaft implantierbare, drahtlose neuronale Schnittstellen, die z.B. querschnittsgelähmten Patienten durch die Überbrückung zerstörter Nervenareale eine Rückkehr in die Welt der Bewegung ermöglichen, völlig kabellos organische Funktionen steuern und so das Infektionsrisiko minimieren. Ziel ist es dabei, eine biokompatible und hochzuverlässige Verbindungstechnologie auf Waferebene für einen gestapelten Hybridaufbau aus Silizium, Polymerfolien, Keramik und SMD-Komponenten zu entwickeln, der ebenso die Aspekte Langzeitstabilität und Miniaturisierung berücksichtigt.

Auch personell wird die Arbeit der beiden Institutionen im Zeichen der Vernetzung stehen. Prof. Dr. Michael Töpper vom Fraunhofer IZM ist als Research Assistant Professor in der Fakultät für Elektrotechnik an der University of Utah (Salt Lake City) und wird dort zusammen mit Prof. Dr. Florian Solzbacher die Entwicklung der Kooperation inhaltlich betreuen. Solzbacher ist ein Experte im Bioingenieurwesen und dem Advanced Si-Micromachining. Töppers Spezielgebiet ist die Aufbau- und Verbindungstechnik mit dem Fokus auf Polymerprozessierung und elektrochemischen Methoden. Dipl.-Phys. Matthias Klein koordiniert in Berlin den Einsatz der Technologie "Made in Germany" innerhalb der Kooperation, wobei seine Kompetenz im Bereich Mikromontage eine tragende Rolle spielt.

Kontakt
Prof. Dr. Michael Töpper
Telefon: +1-801-581-6855
E-Mail: toepper@izm.fraunhofer.de
Dipl.-Phys. Matthias Klein
Telefon: +49 (0) 30/4 64 03-612
Telefax: +49 (0) 30/4 64 03-271
E-Mail: klein@izm.fraunhofer.de

Georg Weigelt | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.coe.utah.edu/news/fraunhofer
http://www.izm.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise