Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quellende Mikrochips für Säure, Salz und Alkohol

28.06.2006
Wissenschaftler an der TU Dresden forschen an der Entwicklung von Hydrogelen

Es gibt Medikamente, deren Wirkstoff soll ausschließlich im Magen abgegeben werden, damit der Körper ihn absorbieren kann. Wandert das Präparat weiter in den Darm, soll die Abgabe des Medikaments wieder stoppen. Möglich ist dies durch so genannte Hydrogele. Mit dieser Art Kunststoff beschäftigt sich Karl-Friedrich Arndt, Professor für Spezielle physikalische Chemie/Physikalische Chemie der Polymere an der Technischen Universität Dresden.

Hydrogele sind wasserenthaltende, aber wasserunlösliche Polymere. Sie haben die Eigenschaft, bei Kontakt mit entsprechenden Substanzen um ein Vielfaches zu quellen, ohne allerdings ihren stofflichen Zusammenhalt zu verlieren. Quellen Hydrogele, nehmen sie Flüssigkeit auf. Gehen sie wieder in den ursprünglichen Zustand über, geben sie Flüssigkeit ab. Temperatur, pH-Wert sowie Konzentration, Lichteinstrahlung oder magnetische bzw. elektrische Felder sind Faktoren, die den Quellprozess bei Hydrogelen beeinflussen bzw. auslösen. Professor Arndt bezeichnet diese Kunststoffe als "smarte Hydrogele", "weil sie eigentlich ganz unscheinbare Werkstoffe sind, aber herausragende Eigenschaften besitzen", so der Wissenschaftler.

Einsetzbar sind die Polymere in der Medizin und Medizintechnik (Kontaktlinsen, gesteuerte Freisetzung von Medikamenten), der chemischen Industrie (Trennsysteme), der Landwirtschaft (gesteuerte Nährstofffreisetzung) sowie in der Elektroindustrie (elektrolytische Gele) und der Sensortechnik (pH-Wertmessung).

In der Medizin wird zum Beispiel ein Wirkstoff mit einem bereits gequollenem Hydrogel versetzt. Nach oraler Einnahme und Kontakt mit der Magensäure reagiert das pH-Wert-empfindliche Hydrogel und gibt mit der Flüssigkeit das Medikament in den Magen ab. Wandert es weiter in dem Darm, ändert sich der pH-Wert. Das Hydrogel nimmt Flüssigkeit auf und quillt wieder, wodurch die Abgabe des Wirkstoffes gestoppt wird. Das Polymer kann dann vom Körper ausgeschieden werden.

Gerald Gerlach, Direktor des Instituts für Festkörperelektronik an der TU Dresden will jetzt Hydrogele in einen winzigen Siliziumchip integrieren und den Quellprozess als Indikator verwenden. Das auf dem Mikrochip platzierte Polymer quillt nach Kontakt mit einer zu untersuchenden Flüssigkeit entsprechend deren chemischer Zusammensetzung. Dadurch verformt sich eine anliegende, flexible Membran. Widerstände messen anschließend den Grad der Deformation, wodurch eine spezifische Messgröße bestimmt werden kann. Mit diesen Sensoren könnten unter anderem Gewässer kontinuierlich auf pH-Wertveränderungen oder Salzkonzentration überwacht oder der Alkoholgehalt in wässrigen Lösungen bestimmt werden.

Denkbar sind mit Hydrogelen ganze Systeme aus Ventilen, Pumpen und Sensoren. Gegenüber mechanischen Technologien haben hydrogelbasierte Bauteile den Vorteil, dass sie kleiner, preiswerter und zuverlässiger sind.

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.chm.tu-dresden.de/pc4/
http://ife.et.tu-dresden.de

Weitere Berichte zu: Flüssigkeit Hydrogel Medikament Mikrochip Polymer Wirkstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen