Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oszillierende Muster bei der Kristallisation von Nanopartikeln

27.06.2006
Potsdamer Max-Planck-Wissenschaftler weisen oszillierende Muster bei der Kristallisation und Selbstorganisation von Nanopartikeln nach

Selbstorganisation und Musterbildung sind grundlegende Prozesse in biologischen Systemen und damit lebensnotwendig. Potsdamer Wissenschaftlern des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung ist es jetzt gelungen, Selbstorganisation mit chemischer Musterbildung zu kombinieren. Dafür koppelten die Wissenschaftler eine oszillierende chemische Reaktion mit der polymerkontrollierten Kristallisation und Selbstorganisation von Bariumkarbonat. Auf diese Weise konnten sie nachweisen, dass oszillierende Reaktionen wie die berühmte Belousov-Zhabotinsky-Reaktion auch in Mehrphasen-Systemen ablaufen. Damit lassen sich sowohl chemische Reaktionen fernab vom thermodynamischen Gleichgewicht als auch biologische Musterbildungen in der Natur besser erklären. Diese Erkenntnisse können zudem zu neuartig strukturierten Oberflächen führen (Angewandte Chemie, 21. Juni 2006).


Ein typisches Belousov-Zhabotinsky-Muster aus konzentrischen Kreisen, beobachtet bei der polymerkontrollierten Kristallisation und Selbstorganisation von Bariumkarbonat. Die Strukturen ähneln dem im Computer simulierten Muster (kleiner Kreis oben rechts). Das verwendete Block-Copolymer ist im Bild als verkürzte Molekülstruktur dargestellt. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Oszillierende chemische Reaktionen, bei denen sich die Reaktionsprodukte periodisch und wiederkehrend ändern, sind von besonderem Interesse für die Wissenschaft. Ihr Verhalten ist unter anderem für die Chaosforschung von Bedeutung, denn solche Reaktionssysteme sind immer komplex und weit entfernt vom thermodynamischen Gleichgewicht. Ein besonders bekanntes Beispiel ist die so genannte Belousov-Zhabotinsky-Reaktion. Hierbei werden die Reaktionsprodukte einer gekoppelten Redoxreaktion über den Farbumschlag eines Indikators sichtbar gemacht - in einer Petrischale lassen sich typische Muster sich ausbreitender konzentrischer Kreise beobachten.

Räumlich oszillierende Reaktionen lassen sich mathematisch gut als so genannte Reaktions-Diffusions-Systeme beschreiben. Dies bedeutet, dass nicht nur die chemischen Reaktionen die Stoffmengen an einem bestimmten Punkt des Raumes beeinflussen, sondern auch die Diffusion, also der Stoffaustausch mit dem Nachbarraum. Damit erhält man in Simulationsrechnungen die typischen konzentrischen Kreismuster einer Belousov-Zhabotinsky-Reaktion. Diese sind in der obigen Abbildung als rot-violettes Muster dargestellt.

Den Potsdamer Forschern gelang nun erstmals der Nachweis, dass diese oszillierenden Reaktionen auch für Mehrphasen-Systeme gelten können und darüber hinaus sogar für Selbstorganisationsprozesse von Nanopartikeln. Wesentlich ist, dass in einem mehrstufigen Reaktionssystem entweder ein autokatalytischer oder autoinhibierender Reaktionsschritt formuliert werden kann. Dies führt zum Aufbau des oszillierenden Systems und damit letztlich zu der beobachteten Musterbildung.

Mit einem neu hergestellten Polymer erzeugten die Potsdamer Forscher die typischen konzentrischen Kreismuster durch gesteuerte Kristallisation von Bariumkarbonat (s. Abb.). Diese Muster stimmen sehr gut mit den durchgeführten Simulationsrechnungen überein. Des Weiteren gelang den Forschern ein komplexes gekoppeltes Reaktionssystem aus Kristallisations-, Komplexierungs- und Fällungsreaktionen aufzustellen und die autokatalytische Komplexbildung zwischen Barium und dem Polymer zu identifizieren.

Bemerkenswert ist, dass die länglichen kristallinen Strukturen, aus denen sich die Kreismuster aufbauen, selbst wieder aus Überstrukturen von Nanopartikeln bestehen, die durch Selbstorganisation entstanden sind (s. Abb.). Damit ist den Max-Planck-Forschern erstmals der Nachweis gelungen, dass die Belousov-Zhabotinsky-Reaktion nicht nur in Lösung abläuft, sondern auch in Mehrphasensystemen sowie bei der Selbstorganisation von Nanopartikeln. Diese Entdeckung ist nicht nur für die Erforschung von Reaktionen fernab vom thermodynamischen Gleichgewicht von Bedeutung, sondern kann auch helfen, biologische Musterbildung zu erklären. Ein Beispiel für biologische Selbstorganisation sind die Muster auf Muschelschalen, die wie im Modellsystem der Potsdamer Forscher über kontrollierte Kristallisation entstehen. Interessanterweise lassen sich auch diese Muster über Reaktions-Diffusions-Systeme mathematisch exakt nachbilden. [HC/AT]

Originalveröffentlichung:

Tongxin Wang, An-Wu Xu, Helmut Cölfen
Formation of self-organized, dynamic structure patterns of barium carbonate crystals in polymer controlled crystallization

Angewandte Chemie (Online-Edition), 21. Juni 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften