Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oszillierende Muster bei der Kristallisation von Nanopartikeln

27.06.2006
Potsdamer Max-Planck-Wissenschaftler weisen oszillierende Muster bei der Kristallisation und Selbstorganisation von Nanopartikeln nach

Selbstorganisation und Musterbildung sind grundlegende Prozesse in biologischen Systemen und damit lebensnotwendig. Potsdamer Wissenschaftlern des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung ist es jetzt gelungen, Selbstorganisation mit chemischer Musterbildung zu kombinieren. Dafür koppelten die Wissenschaftler eine oszillierende chemische Reaktion mit der polymerkontrollierten Kristallisation und Selbstorganisation von Bariumkarbonat. Auf diese Weise konnten sie nachweisen, dass oszillierende Reaktionen wie die berühmte Belousov-Zhabotinsky-Reaktion auch in Mehrphasen-Systemen ablaufen. Damit lassen sich sowohl chemische Reaktionen fernab vom thermodynamischen Gleichgewicht als auch biologische Musterbildungen in der Natur besser erklären. Diese Erkenntnisse können zudem zu neuartig strukturierten Oberflächen führen (Angewandte Chemie, 21. Juni 2006).


Ein typisches Belousov-Zhabotinsky-Muster aus konzentrischen Kreisen, beobachtet bei der polymerkontrollierten Kristallisation und Selbstorganisation von Bariumkarbonat. Die Strukturen ähneln dem im Computer simulierten Muster (kleiner Kreis oben rechts). Das verwendete Block-Copolymer ist im Bild als verkürzte Molekülstruktur dargestellt. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung

Oszillierende chemische Reaktionen, bei denen sich die Reaktionsprodukte periodisch und wiederkehrend ändern, sind von besonderem Interesse für die Wissenschaft. Ihr Verhalten ist unter anderem für die Chaosforschung von Bedeutung, denn solche Reaktionssysteme sind immer komplex und weit entfernt vom thermodynamischen Gleichgewicht. Ein besonders bekanntes Beispiel ist die so genannte Belousov-Zhabotinsky-Reaktion. Hierbei werden die Reaktionsprodukte einer gekoppelten Redoxreaktion über den Farbumschlag eines Indikators sichtbar gemacht - in einer Petrischale lassen sich typische Muster sich ausbreitender konzentrischer Kreise beobachten.

Räumlich oszillierende Reaktionen lassen sich mathematisch gut als so genannte Reaktions-Diffusions-Systeme beschreiben. Dies bedeutet, dass nicht nur die chemischen Reaktionen die Stoffmengen an einem bestimmten Punkt des Raumes beeinflussen, sondern auch die Diffusion, also der Stoffaustausch mit dem Nachbarraum. Damit erhält man in Simulationsrechnungen die typischen konzentrischen Kreismuster einer Belousov-Zhabotinsky-Reaktion. Diese sind in der obigen Abbildung als rot-violettes Muster dargestellt.

Den Potsdamer Forschern gelang nun erstmals der Nachweis, dass diese oszillierenden Reaktionen auch für Mehrphasen-Systeme gelten können und darüber hinaus sogar für Selbstorganisationsprozesse von Nanopartikeln. Wesentlich ist, dass in einem mehrstufigen Reaktionssystem entweder ein autokatalytischer oder autoinhibierender Reaktionsschritt formuliert werden kann. Dies führt zum Aufbau des oszillierenden Systems und damit letztlich zu der beobachteten Musterbildung.

Mit einem neu hergestellten Polymer erzeugten die Potsdamer Forscher die typischen konzentrischen Kreismuster durch gesteuerte Kristallisation von Bariumkarbonat (s. Abb.). Diese Muster stimmen sehr gut mit den durchgeführten Simulationsrechnungen überein. Des Weiteren gelang den Forschern ein komplexes gekoppeltes Reaktionssystem aus Kristallisations-, Komplexierungs- und Fällungsreaktionen aufzustellen und die autokatalytische Komplexbildung zwischen Barium und dem Polymer zu identifizieren.

Bemerkenswert ist, dass die länglichen kristallinen Strukturen, aus denen sich die Kreismuster aufbauen, selbst wieder aus Überstrukturen von Nanopartikeln bestehen, die durch Selbstorganisation entstanden sind (s. Abb.). Damit ist den Max-Planck-Forschern erstmals der Nachweis gelungen, dass die Belousov-Zhabotinsky-Reaktion nicht nur in Lösung abläuft, sondern auch in Mehrphasensystemen sowie bei der Selbstorganisation von Nanopartikeln. Diese Entdeckung ist nicht nur für die Erforschung von Reaktionen fernab vom thermodynamischen Gleichgewicht von Bedeutung, sondern kann auch helfen, biologische Musterbildung zu erklären. Ein Beispiel für biologische Selbstorganisation sind die Muster auf Muschelschalen, die wie im Modellsystem der Potsdamer Forscher über kontrollierte Kristallisation entstehen. Interessanterweise lassen sich auch diese Muster über Reaktions-Diffusions-Systeme mathematisch exakt nachbilden. [HC/AT]

Originalveröffentlichung:

Tongxin Wang, An-Wu Xu, Helmut Cölfen
Formation of self-organized, dynamic structure patterns of barium carbonate crystals in polymer controlled crystallization

Angewandte Chemie (Online-Edition), 21. Juni 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie