Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronales Mosaik der Töne

20.06.2006
Max-Planck-Forscher haben kartografiert, wo das Gehirn bestimmte Frequenzen verarbeitet

Das Gehirn filtert, was wir hören. Das gelingt ihm auch deshalb, weil einzelne Gruppen seiner Neuronen nur auf bestimmte Frequenzen reagieren. Neurobiologen vom Max-Planck-Institut für biologische Kybernetik in Tübingen haben jetzt für einige Bereiche des auditorischen Cortex eine Frequenzkarte erstellt: Mit der hochauflösenden funktionellen Kernspintomografie haben sie zudem identifiziert, welche neuronalen Felder jeweils durch einzelne Frequenzen und welche durch Frequenzgemische aktiviert werden. (PLoS Biology, 20. Juni 2006)


Das Hirnareal, mit dem Makaken Schall verarbeiten ist wie ein Mosaik in einzelne Felder aufgeteilt. Max-Planck-Forscher haben in einer fMRI-Studie jetzt charakterisiert, wie sich das Frequenzspektrum über jedes einzelne dieser Felder verteilt. Bild: Gopinath S. / www.photoessays.net / MPI für biologische Kybernetik

Was wir hören, entscheidet unser Gehirn. Ob in einer Fabrikhalle, in der ratternde Maschinen Krach machen, oder bei einer Party, auf der Musik und redende Leute durcheinander lärmen: Wenn wir uns unterhalten, können wir die Stimme des Gesprächspartners immer noch aus der Geräuschkulisse herausfiltern. Wie es das macht, haben Neurophysiologen aber noch nicht völlig verstanden. Immerhin haben sie inzwischen herausgefunden, dass bestimmte Gehirnareale die Cochlea abbilden - und zwar ähnlich wie bei der Netzhaut Punkt für Punkt. Für die Cochlea, die Schnecke im Innenohr, bedeutet das, dass verschiedene Frequenzen bestimmte Gruppen von Neuronen des auditorischen Cortex aktivieren. Das Gehirn analysiert anschließend vermutlich, welche Schallquelle oder Schallquellen eine bestimmte Frequenz abgibt beziehungsweise abgeben. Welche Bereiche des Gehirns für einzelne Frequenzen zuständig sind, konnten Wissenschaftler bislang im Detail nur mit elektrophysiologischen und anatomischen Untersuchungen zeigen, und das auch nur im Gehirn von Tieren, zum Beispiel von Makaken.

Am Menschen werden solche Studien nur selten gemacht. Dafür haben Neurologen das Gehirn des Menschen inzwischen ziemlich gründlich mit der funktionellen Kernspintomografie (fMRI) durchleuchtet, auch den auditorischen Cortex. Die Aktivitätsmuster, die sie darin beim Hören sahen, haben sie oft mit den Studien an den Affen verglichen. "Das ist aber ein schlechter Vergleich", sagt Christopher Petkov, der die Untersuchungen am Tübinger Max-Planck-Institut leitete: fMRI-Aufnahmen des auditorischen Cortex von Affen gab es bislang aber nicht. "Wir haben diese Lücke jetzt geschlossen." Nun können die Wissenschaftler vergleichen, welche Ergebnisse verschiedene Methoden über den auditorischen Cortex der Makaken liefern. Sie können aber auch besser untersuchen, inwiefern sich die neuronalen Schallzentren der Affen und des Menschen ähneln und unterscheiden. Auf diese Weise können sie künftig auch besser untersuchen, wie sich das Gehirn in einer lauten Umgebung auf eine einzelne Schallquelle konzentriert.

... mehr zu:
»ACF »Affe »Cortex »Frequenz

In der neue fMRI-Studie haben die Wissenschaftler nicht nur die einzelnen Felder des auditorischen Cortex (ACFs) identifiziert, wie sie es aus den Ergebnissen der früheren Untersuchungen erwartet hatten. Sie haben auch für die meisten Felder Frequenzkarten gezeichnet. Sie haben also festgestellt, wo in einem Feld bestimmte Frequenzen verarbeitet werden. Vier ACFs haben sie dabei erstmals kartografiert. Insgesamt haben sie nun elf ACFs charakterisiert, die sich auf der Hirnoberfläche mosaikartig anordnen. Dabei ergab sich ein periodisches Muster: Über ein Feld hinweg nimmt die verarbeitete Frequenz mit einem Gradienten entweder ab oder zu. Im den daran anschließenden Feldern entwickelt sich die Frequenz genau umgekehrt, so dass sich über den auditorischen Cortex hinweg ein Auf und Ab der Tonhöhen ergibt, für die bestimmte Nerven zuständig sind. Jede Frequenz findet sich daher in jedem ACF wieder. "Wahrscheinlich haben die einzelnen ACF dabei verschiedene Aufgaben", sagt Petkov: "Die Unterschiede kennen wir aber noch nicht genau."

Immerhin haben die Forscher die ACFs schon in zwei Gruppen eingeteilt, die jeweils für andere Schallsignale zuständig sind. Drei dieser Felder, die eine Art Kern des auditorischen Cortex bilden, reagieren auf Töne einzelner Frequenzen. Die anderen acht, darunter auch die neu charakterisierten, sprechen eher auf Geräusche an, in denen sich verschiedene Frequenzen mischen. Diese ACFs schließen sich wie ein Gürtel um die drei Kernfelder.

Das Muster der Tonhöhen in jedem einzelnen ACF war jedoch nicht so differenziert, wie es sich auf der Tastatur eines Klaviers findet. Richtig gut konnten die Zuständigkeiten bestimmter Nerven nur zuordnen, wenn die Töne vier Oktaven auseinander lagen. "Das liegt aber vor allem an den experimentellen Bedingungen", sagt Petkov: Um im fMRI überhaupt deutliche Signale zu sehen, haben sie die Affen mit Tönen beschallt, die die Tiere in ihrer natürlichen Umgebung hören und die gleichzeitig lauter waren als die Testtöne in elektrophysiologischen Studien. "Dann sind immer größere Bereiche im auditorischen Cortex aktiv", so Petkov. Für die Max-Planck-Forscher war das nur ein Nebenaspekt. Diese Erkenntnis gibt aber einen Hinweis, wie Lärm den auditorischen Cortex beeinträchtigt und was im Gehirn passiert, wenn sich Menschen einen Hörschaden zuziehen. [ML]

Originalveröffentlichung:

Christopher I. Petkov, Christoph Kayser, Mark Augath, Nikos K. Logothetis
Functional imaging reveals numerous fields in the monkey auditory cortex
PLoS Biology, 20. Juni 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: ACF Affe Cortex Frequenz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise