Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das "Duale System" der Zelle

27.11.2001


Abb. 1: Die äußere Form der Tricorn-Protease ist durch eine Oberflächendarstellung angedeutet. Tricorn besitzt insgesamt sechs aktive Zentren, die durch grüne und lila Bälle symbolisiert sind. Die zu einem Zentrum gehörigen Strukturelemente sind in einer vereinfachten Bänderrepräsentation dargestellt. Die unterschiedliche Farbcodierung deutet an, dass sich eine Untereinheit wie ein Mosaik aus fünf in sich besonders kompakten Faltungsdomänen zusammensetzt. Wie in einem Uhrwerk greifen die einzelnen Module ineinander und ermöglichen so das kontrollierte Weiterzerlegen der Proteasom-Schnipsel. Propellerartige Module führen die Proteasom-Schnipsel zum aktiven Zentrum hin (blau) und die im Tricorn entstehenden Minischnipseln wieder weg (gelb).

Grafik: Max-Planck-Institut für Biochemie


Abb. 2: Vereinfachte Darstellung, wie die am intrazellulären Proteinabbau beteiligten Komponenten vermutlich miteinander wechselwirken: Am Produktausgang der Tricorn-Protease, die wie in Abb. 1 ausgerichtet ist, befindet sich die F1-Protease und zerlegt die Minischnipseln aus dem Tricorn in einzelne Aminosäuren. Beladen wird die Tricorn-Protease durch das schematisch dargestellte Proteasom. Tricorn bildet das Herzstück dieser molekularen Degradations-Fabrik.

Grafik: Max-Planck-Institut für Biochemi


Max-Planck-Wissenschaftler entschlüsseln atomaren Bauplan der Tricorn-Protease, der Wiederverwertungsmaschine für zelluläre Abfallprodukte

Das Überleben von Zellen hängt wesentlich davon ab, wie es ihnen gelingt, eigene Ressourcen effizient zu nutzen. Dazu gehört nicht zuletzt die Aufarbeitung, Wiederverwendung oder die Beseitigung unbrauchbarer oder überflüssiger Zellbestandteile. Wissenschaftlern vom Max-Planck-Institut für Biochemie in Martinsried ist es jetzt gelungen, den Bauplan und den Funktionsmechanismus der für diese Arbeit verantwortlichen molekularen Maschine in der Zelle, der Tricorn-Protease, bis ins atomare Detail aufzuklären (nature, 22. November 2001).

Jede lebende Zelle ist ein komplexes System, in dem überflüssig gewordene oder fehlerhafte Komponenten laufend beseitigt werden müssen. Seit längerem war bekannt, dass hierbei das Proteasom eine wichtige Rolle spielt. Es dient gewissermaßen als Reißwolf, der unnötige Zellbestandteile (Proteine) zerkleinert. Allerdings löst das Proteasom das Abfallbeseitigungsproblem noch nicht, sondern verlagert es zunächst nur auf eine andere Ebene, denn es generiert zwar eine Vielzahl von "Proteinschnipseln" (kurze Ketten von etwa acht "Aminosäuren"), die für die Zelle jedoch in der Regel weiterhin noch unbrauchbaren Ballast darstellen. Doch wie in unserem Alltag, kommt es auch in der mikroskopischen Welt der Zellen darauf an, mit den zur Verfügung stehenden Ressourcen effizient zu haushalten. Einmal aus dem Gleichgewicht gebracht, kann das entstehende "Müllproblem" dort zu ernsthaften Krankheiten wie Alzheimer oder Krebs führen. Daher suchten Wissenschaftler weltweit fieberhaft nach der Lösung des zellulären Abfallproblems - und wurden vor etwa fünf Jahren zunächst in "einfachen" archae-bakteriellen Zellen fündig. Eine Forschergruppe um Prof. Wolfgang Baumeister am Max-Planck-Institut für Biochemie in Martinsried konnte damals die Tricorn-Protease identifizieren, ein gigantisches Protein, das die vom Proteasom erzeugten Proteinschnipsel weiter verarbeitet. Wissenschaftlern aus der von Nobelpreisträger Prof. Robert Huber geleiteten Abteilung "Strukturforschung" des selben Max-Planck-Instituts gelang nun der Durchbruch bei der Aufklärung der atomaren Struktur der Tricorn-Protease. Sie förderten einen dreidimensionalen Bauplan von schier erdrückender Komplexität zutage, der schlagartig auch viele neue Details über den Wirkungsmechanismus der Tricorn-Protease verrät.

Die bereits vom Proteasom erzeugten Proteinschnipsel werden trichterartig in die Tricorn-Protease eingespeist und dann - über ein Kanalsystem - an ihre "Werkbank", das so genannte katalytische Zentrum, herangeführt. Dort sorgen zwei "Türsteher" (positiv geladene Aminosäuren) dafür, dass die wackligen Proteasomschnipsel exakt in Position und Orientierung eingespannt werden, damit sie effizient in kleinere Teile zerschnitten werden können. Dazu benutzt das Tricorn eine Salami-Schneide-Technik: Zuerst wird vom hinteren Ende des Proteinschnipsels ein kurzes Stück (zwei oder drei Aminosäuren) abgeschnitten und aus dem Tricorn entfernt. Danach ziehen die beiden Aminosäure-Türsteher den verbleibenden Proteinschnipsel weiter in das Tricorn hinein. Dieser Vorgang wiederholt sich so oft, bis die ursprünglich aus dem Proteasom kommende Aminosäurekette vollständig in kurze Mini-Schnipsel zerlegt ist. Doch was passiert mit diesen im Tricorn anfallenden Mini-Schnipseln? Sie werden durch einen molekularen "Auspuff", ein weiteres Kanalsystem, aus dem Inneren der Tricorn-Protease wieder an ihre Oberfläche geleitet. Bei der Untersuchung dieses ungewöhnlich elastischen Kanalsystems fanden die Martinsrieder Strukturforscher starke Hinweise dafür, dass der Tricorn-Auspuff-Kanal als Eingangstrichter in ein weiteres Protein ("F1") mündet. Dieses F1-Protein wandelt die Mini-Schnipsel aus dem Tricorn in einzelne Aminosäuren um, womit der Abfallwiederverwertungszyklus geschlossen ist. Einzelne Aminosäuren können nämlich von der Zelle wieder dazu verwendet werden, neue Proteine für aktuelle Bedürfnisse herzustellen.

Die Tricorn-Protease verkörpert demnach das Herzstück einer hoch komplexen Demontagestraße für Proteine. Die einzelnen Module sind fließbandartig hintereinander angeordnet, was die Bedeutung der kanalisierten Einspeisung der Proteinschnipsel in die jeweils nächste Demontage-Einheit unterstreicht. Für diese scheinbar aufwändige Infrastruktur haben die Wissenschaftler eine einfache Erklärung: Mit zunehmender Aufspaltung der Proteine (abnehmende Schnipsellänge) steigt die Anzahl der Abfallprodukte. Für die Bewältigung der damit verbundenen logistischen Anforderungen ist eine Fließbandabfertigung die ideale Lösung.

Jetzt wollen die Martinsrieder Wissenschaftler untersuchen, welche Bedeutung die jeweils anfallenden Zwischenprodukte in der Zelle haben. Sie werden dazu - unter Zuhilfenahme der gewonnenen Strukturinformationen - an ausgewählten Elementen des Fließbandes gezielt in die Protein-Demontage eingreifen. Hans Brandstetter, Leiter des Forscherteams, bemerkt dazu: "Davon erhoffen wir uns ein besseres Verständnis der Stresssituationen in der Zelle, bei denen die alltägliche Balance zwischen Abfallvermeidung und Wiederaufbereitung gestört ist." Brandstetter weiter: " Wir haben mit Bewunderung festgestellt, dass die Natur auf molekularer Ebene schon lange über ein ausgetüfteltes Recycling-System verfügt, das wir mit dem ‚Grünen Punkt’ bzw. dem ‚Dualen System’ erst noch erreichen wollen."

Dr. Hans Brandstetter | Presseinformation
Weitere Informationen:
http://www.mpg.de/index.html

Weitere Berichte zu: Aminosäure Proteasom Protein Proteinschnipsel Tricorn Tricorn-Protease Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie