Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteom von Hefe-Mitochondrien entschlüsselt; Forscher liefern größte Proteininventur eines Zellkompartiments

06.06.2006
Ein Meilenstein in der Zellforschung: Größte Proteom-Studie von Hefe-Mitochondrien liefert neue Erkenntnisse über die Funktion von Mitochondrien-Proteinen.
Zum Abschluss der Studie berichten Chris Meisinger von der Universität Freiburg und Albert Sickmann vom Rudolf-Virchow-Zentrum/DFG-Forschungszentrum für Experimentelle Biomedizin heute in der online Ausgabe von "Journal of Proteome Research" über die letzten 102 Proteine von insgesamt 851.

Mitochondrien sind als "Kraftwerke" der Zelle bekannt. Ohne deren Energieproduktion sind höhere Lebewesen nicht lebensfähig. Neben der Zellatmung sind sie allerdings auch in eine Vielzahl zellulärer Funktionen involviert und erfüllen wichtige Aufgaben im Stoffwechsel von Eiweißen, Fetten, Zuckern und Eisen sowie bei der Apoptose, dem programmierten Zelltod. Für diese Aufgaben sind zahlreiche Proteine nötig. Einen kleinen Teil dieser Proteine stellen die Mitochondrien aus eigener Erbinformation her. Doch nur ungefähr ein Prozent wird dort produziert. 99 Prozent der Proteine werden im Zellkern programmiert, im Cytosol zusammengebaut und dann in das Zellorganell transportiert. Der Transport ist allerdings gar nicht so einfach - denn die Mitochondrien liegen in der Zelle wie eine Art Unterzelle klar abgegrenzt. Über diese Grenze geht es nur über andere Proteine, die als Shuttle dienen.

Mitochondrien - die Kraftwerke der Zelle. AG Sickmann/RVZ

Ursprünglich waren es diese Transport-Proteine, die die Zellforscher aus Freiburg interessierten. Doch bei ungefähr 1000 Proteinen, die in Mitochondrien vorkommen, waren diese mit herkömmlichen Methoden einfach nicht zu fassen. Die Zusammenarbeit mit der Gruppe um Albert Sickmann vom Rudolf-Virchow-Zentrum erwies sich als Lösung: Die Würzburger fischten einfach alles raus was sie finden konnten: eine komplette Analyse des Proteoms, aller Proteine, die sich in den Mitochondrien befinden Zur Analyse setzen sie hoch moderne Methoden wie Massenspektrometrie und Hochleistungscomputer ein, die ihnen helfen, die unglaubliche Datenmenge von über 1000 Proteinen zu ordnen und in einer Datenbank mit bereits bekannten zu vergleichen. Damit ist es den Forschern erstmals gelungen, nahezu die Gesamtheit aller Proteine von Mitochondrien zu erfassen. Nach mehr als 20 Millionen Datensätzen waren 749 Proteine (2003) bekannt, heute veröffentlichen die Forscher die letzten 102 Proteine.

Bei der Datenbankanalyse der 749 stoßen die Würzburger auf eine erste große Überraschung: Trotz der Hauptfunktion als "Kraftwerke" der Zelle sind nur 14 Prozent aller Proteine daran beteiligt. Über ein Viertel (250 Proteine) sind dafür zuständig, das eigene kleine Mitochondrien-Genom abzulesen und in Proteine zu übersetzen. Außerdem sind 25 Prozent bis dato noch völlig unbekannt - 250 Proteine gehen an die Zellforscher nach Freiburg, die deren Funktion genauer untersuchen. Die genaue funktionelle Analyse liefert den Zellforschern 10 Kandidaten. In den letzten drei Jahren konnten die Zellforscher um den Freiburger Nikolaus Pfanner damit einen Meilenstein in der Erforschung des Mitochondrien-Transport setzen: Sechs der 10 Kandidaten sind klar am Transport in die Mitochondrien beteiligt. Einige arbeiten in bereits bekannten Shuttlen - den Transportwegen TIM und TOM, für andere konnten sie einen ganz neuen Transportweg aufklären, den die Forscher SAM nennen. Damit ist einer der wichtigsten Transportmechanismen in der Zelle - der Transport von Proteinen in das "Kraftwerk" der Zelle zu einem großen Teil aufgeklärt.

84 Prozent der Proteine wurden durch die Studie nun erfasst. Dies erscheint uns nach den großen Schlagzeilen über die Entschlüsselung des Genoms, der Gesamtheit all unserer Gene, als wenig. Warum beenden die Forscher die Studie hier? Das Proteom, die Gesamtheit aller Proteine in einer Zelle oder Zellkompartiment ist jedoch hoch dynamisch. Das heißt, dass sich das Proteom im Gegensatz zum Genom ständig ändert. Die besten Daten bisher lagen bei knapp 50 Prozent (2004). Aber sind unter den fehlenden 150 noch wichtige unbekannte? Wahrscheinlich schon, allerdings ist es jetzt vorerst daran, die Techniken noch weiter zu verbessern, dann erst geht wieder das große Fischen los.

Die Entschlüsselung des Proteoms ist nicht nur in der Zellforschung von großer Bedeutung - auch in der biomedizinischen Forschung. Eine Vielzahl der identifizierten Proteine ist direkt homolog zu Proteinen des Menschen. Darunter auch solche, die beim Menschen für die Entstehung von schweren Stoffwechselkrankheiten wie das Sjörgen-Larsson-Syndrom und das Wolf-Hirschhorn-Syndrom verantwortlich sind. Auch an der Entstehung vieler Volkskrankheiten wie Krebs, kardiovaskulären Krankheiten oder Autoimmunkrankheiten sind fehlerhaft funktionierende Mitochondrien beteiligt. Die Kenntnis über diese Proteine soll zum tieferen Verständnis der Krankheiten führen.

Das Rudolf-Virchow-Zentrum ist das DFG-Forschungszentrum für Experimentelle Biomedizin und gehört als Zentrale Einrichtung zur Universität Würzburg. Das Zentrum wurde im Januar 2002 gegründet und ist eines von drei im Sommer 2001 bewilligten Pilotprojekten, mit denen die Deutsche Forschungsgemeinschaft (DFG) so genannte "Centers of Excellence" fördert. In den drei Bereichen "Nachwuchsgruppeninstitut", "Kernzentrum" und "Forschungsprofessuren" arbeiten zur Zeit neun Arbeitsgruppen auf dem Gebiet der Schlüsselproteine. Außerdem gehört ein Lehr- und Ausbildungsbereich zum Rudolf-Virchow-Zentrum. Gemeinsam mit den Fakultäten für Biologie und Medizin der Universität Würzburg werden ein Studiengang Biomedizin und eine "Graduate-School" für Doktoranden angeboten. Das "Public Science Center", eine eigene Abteilung für Öffentlichkeitsarbeit, setzt sich für den Dialog zwischen Wissenschaft und Gesellschaft ein.

Kontakt und Interviewanfragen:
Rudolf-Virchow-Zentrum / DFG-Forschungszentrum für Experimentelle Biomedizin
Sonja Jülich (Leiterin Öffentlichkeitsarbeit), Telefon 0931 / 201 48714, Mobil: 0174-2118850, Email: sonja.juelich@virchow.uni-wuerzburg.de

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie