Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freigiebiges Eisen

02.06.2006
Max-Planck-Forscher synthetisieren eine außergewöhnliche Verbindung mit sechswertigem Eisen

Eisen kann mehr als ihm Chemiker bislang zugetraut haben. Wissenschaftler des Max-Planck-Instituts für Bioanorganische Chemie in Mülheim haben jetzt eine Verbindung synthetisiert, in deren Zentrum ein Eisenatom besonderer Art sitzt. Dieses Eisenatom hat nämlich sechs seiner acht äußeren Elektronen abgegeben. Gewöhnlich trennt es sich nur von zwei oder drei Elektronen und kommt in diesen Oxidationsstufen auch in vielen Mineralien und Proteinen wie dem roten Blutfarbstoff vor. Der neue Komplex mit Eisen in der sechsten Oxidationsstufe könnte dazu beitragen, dass Wissenschaftler enzymatische Prozesse besser verstehen. (Science, 1. Juni 2006)


Die Struktur des neuartigen Nitrido-Komplexes. Bild: John F. Berry / Max-Planck-Institut für bioanorganische Chemie


Rotlicht für einen Eisenkomplex: Die Mühlheimer Forscher bestrahlen die Ausgangsverbindung mit einem roten Laserstrahl, so dass sich der gelbe Eisen(VI)-Nitrido-Komplex (gelber Fleck) bildet. Bild: Max-Planck-Institut für bioanorganische Chemie

Eisenmangel macht schlapp und müde. Nicht nur weil am Eisen des Hämoglobin der Sauerstoff ankert, während ihn die roten Blutkörperchen in die Zellen transportieren. Eisenatome mischen auch bei der Zellatmung mit. Und ein Enzym mit einem Eisenkern baut in der Leber organischen Müll ab, der sich im Körper gesammelt hat. Dieses Enzym nennen Biochemiker P450. Wie es genau funktioniert, wissen sie noch nicht. Sie vermuten, das Eisen in seinem Zentrum könnte auch ungewöhnlich hohe Oxidationsstufen annehmen. "Wir haben jetzt einen weiteren Beleg geliefert, dass Eisen dazu in der Lage ist", sagt Karl Wieghardt. Der Direktor des Mülheimer Instituts leitet die Gruppe um den Humboldt-Stipendiaten John F. Berry, die die außergewöhnliche Verbindung hergestellt hat. Die Chemiker haben Eisen in einer Komplexverbindung, die Biomolekülen mit einem Eisenkern ähnelt, in die sechste Oxidationsstufe gezwungen.

Als Oxidationsstufe bezeichnen Chemiker die Zahl der Elektronen, die ein Atom in einer Verbindung an seine Partner abgibt. Eisen in der sechsten Oxidationsstufe kennen Chemiker bislang nur aus einer einzigen Verbindung, einem Ferrat-Ion, in dem das Eisen vier Sauerstoffliganden trägt. In diese Verbindung bringen sie das Eisen jedoch nur unter großem Zwang. Entsprechend instabil ist das Ferrat und holt sich von anderen Stoffen gerne wieder Elektronen zurück, bis das Eisen seine stabile zwei- oder dreiwertige Form zurückgewonnen hat. Ähnliches gilt für Eisen in der vierten und fünften Oxidationsstufe, die Wissenschaftler sprechen auch von vier- oder fünfwertigem Eisen.

Die neue sechswertige Verbindung haben die Chemiker hergestellt, indem sie einem dreiwertigen Eisen in zwei Schritten drei Elektronen entlockt haben. Ausgegangen sind sie von einer Verbindung, in der das Eisen in einen Ring aus Stickstoff und Kohlenstoff eingebettet ist und zusätzlich von einem reaktiven Stickstoffrest und einem Sauerstoffatom in die Zange genommen wird. Nun haben sie das Eisen zunächst elektrochemisch in die vierte Oxidationsstufe gezwungen: Indem sie an eine Lösung der Verbindung eine elektrische Spannung anlegten, haben sie aus dem Metall ein Elektron abgesaugt. Im zweiten Schritt haben sie die Reaktionslösung mit rotem Licht bestrahlt und so eine Reaktion eingeleitet, bei der das Eisen zwei weitere Elektronen hergeben musste. Allerdings ist auch die neue Verbindung nur bei rund 200 Grad unter Null über längere Zeit stabil.

"Wir werden nun untersuchen, welche Rolle eine solche Verbindung in der Biochemie spielen könnte", sagt Wieghardt. Ferrat, die bislang bekannte sechswertige Eisenverbindung, ist viel zu aggressiv als dass sie in biologischen Prozessen mitspielen könnte. Sie würde wahllos alle organischen Verbindungen zerstören. "Das ist als würden sie auf die Verbindungen mit einem Vorschlaghammer hauen", sagt Wieghardt. Er und seine Mitarbeiter hoffen nun, dass die neue Verbindung nur bestimmte Verbindungen aufbricht. Das könnten auch organische Chemiker ausnutzen, die immer Oxidationsmittel mit suchen, die nur an ausgewählten Stellen ihrer Moleküle eingreifen.

[PH]

Originalveröffentlichung:

John F. Berry, Eckhard Bill, Eberhard Bothe, Serena DeBeer George, Bernd Mienert, Frank Neese and Karl Wieghardt
An Octahedral Coordination Complex of Iron(VI)
Science, 1. Juni 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Chemiker Eisen Eisenatom Elektron Oxidationsstufe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie