Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Strukturen des Infektionsapparates von Salmonellen aufgeklärt

01.06.2006
Die Strukturveränderung eines molekularen Infektionsapparates dient bei Salmonellen gleichzeitig als Signal zum Beenden seines weiteren Aufbaus.

Details dieses eleganten Rückkoppelungs-Systems auf Nano-Ebene werden in der heutigen Ausgabe der Fachzeitschrift NATURE veröffentlicht. Das bessere Verständnis über den Aufbauvorgang des nadelartigen Sekretionskanals dieses Erregers bietet zukünftig neue Ansatzmöglichkeiten zur Verhinderung des Infektionsprozesses. Die Ergebnisse des Teams um Thomas Marlovits, der als gemeinsamer Gruppenleiter von IMP und IMBA den neuen "Vienna Spot of Excellence" am Campus Vienna Biocenter leiten wird, konnten durch Kryoelektronenmikroskopie wissenschaftlich exakt und anschaulich geklärt werden.

Salmonellen verursachen Typhus und Lebensmittelvergiftungen. Wichtiges Strukturmerkmal des Infektionsprozesses dieses Bakteriums ist das so genannte "Typ III secretion system" (TTSSa). Dieses erlaubt es, Bakterienproteine in die Wirtszelle einzuschleusen. Die zentrale Rolle des Apparates hat eine hohlnadelartige Struktur, deren Länge entscheidend für den erfolgreichen Infektionsprozess ist.

Wie beim Aufbau dieser biologischen Nano-Maschine die genaue Länge der Nadel sichergestellt wird, konnte Dr. Thomas C. Marlovits, wissenschaftlicher Leiter eines "Vienna Spot of Excellence", mit KollegInnen aus den USA nun klären. Dazu Marlovits: "Als schönes Beispiel für molekulares Multi-tasking ist das TTSSa nicht nur für den Transport von Bakterienproteinen in die Wirtszelle zuständig, sondern auch für seinen eigenen Aufbau aus gut 200 einzelnen Strukturproteinen. Dabei wird die Länge der Nadelstruktur durch einen raffinierten Mechanismus gesteuert. Kernstück dieses Mechanismus ist die Veränderung der Spezifität des TTSSa für unterschiedliche Proteine. Hat das TTSSa während der Anfangsphase des Aufbaus noch eine hohe Spezifität für seine eigenen Strukturproteine, so ändert sich diese später zu jenen Proteinen, die für den eigentlichen Infektionsprozess wichtig sind. Entscheidend für diesen Wechsel ist eine Änderung der Struktur des TTSSa."

Tatsächlich besteht das TTSSa aus vier wichtigen Bestandteilen: einer in der Bakterienmembran verankerten Basis mit einer Halterung, sowie einer darüber liegenden inneren Ringstruktur, auf der die Nadel aufgebaut wird. Marlovits konnte nun zeigen, dass die Ringstruktur die Nadel fest mit der Halterung und Basis verbindet. Diese Bindung bewirkt auch eine strukturelle Änderung der Basis, die sich auf deren Fähigkeit auswirkt, Proteine aus dem Zellinneren zu binden. Damit dient die Strukturänderung als Signal dafür, dass die Nadel fertig ist. Anstatt weiterer Proteine für den Aufbau werden dann jene Proteine transportiert, die für den Infektionsprozess notwendig sind.

Ausschlaggebend für die überzeugenden Ergebnisse des Teams um Marlovits war die Kombination hochauflösender bildgebender Verfahren ­ der Kryoelektronenmikroskopie ­ mit der molekulargenetischen Analyse von Mutanten, die ungewöhnlich lange Nadelstrukturen bilden. Von diesen war bekannt, dass das Protein InvJ einen Einfluss auf die Nadellänge hatte ­ aber nicht wodurch dieser Einfluss ausgeübt wurde. Marlovits Vergleich ergab ein überraschend klares Bild: den Mutanten fehlte die innere Ringstruktur komplett. Da diese Mutanten aber trotzdem Nadelstrukturen, und zwar von enormer Länge, bilden können, lag die Vermutung nahe, dass die innere Ringstruktur eine Art Stopp-Signal für den Nadelaufbau liefert, das bei den Mutanten eben fehlt. Weitere Analysen zeigten dann zusätzlich deutliche Strukturunterschiede der Basis von Wildtyp und Mutante. Marlovits Hypothese ist nun, dass diese Strukturänderung Einfluss auf die Bindung jener Proteine hat, die durch TTSSa kanalisiert werden ­ und so das Stopp-Signal für den Nadelaufbau liefert.

Neben der Grundlage für weitere Arbeiten am Infektionskanal ist diese heute in Nature veröffentlichte Hypothese über das Stopp-Signal für Marlovits auch ein gutes Start-Signal für den in Gründung befindlichen "Vienna Spot of Excellence" des Forschungsinstituts für Molekulare Pathologie (IMP) und des Instituts für Molekulare Biotechnologie (IMBA).

Originalpublikation: Assembly of the inner rod determines needle length in the type III secretion injectisome. NATURE 441, 637-640 (1 June 2006) | doi:10.1038/nature04822

Über die "Vienna Spots of Excellence":

Die "Vienna Spots of Excellence" sind eine Initiative der Stadt Wien zur Unterstützung von Forschungsvorhaben, an denen mindestens ein Wiener Unternehmen und ein wissenschaftlicher Partner beteiligt sind. In der ersten Runde der Ausschreibungen wurden im März 2006 drei Projekte bewilligt, von denen eines am Campus Vienna Biocenter angesiedelt ist. Es trägt den Arbeitstitel "Center of Molecular and Cellular Nanostructure Vienna (CMCN)" und wird von Dr. Thomas C. Marlovits geleitet. Marlovits, zuvor an der Yale School of Medicine, ist seit September 2005 gemeinsamer Gruppenleiter des Forschungsinstituts für Molekulare Pathologie (IMP) und des Instituts für Molekulare Biotechnologie (IMBA).

Über das "IMP- IMBA Research Center":

Zwischen dem Forschungsinstitut für Molekulare Pathologie (IMP), das 1988 von Boehringer Ingelheim gegründet wurde, und dem seit 2003 operativen Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften (IMBA) wurde eine enge Forschungskooperation vereinbart. Unter dem Namen "IMP-IMBA Research Center" greifen die beiden Institute auf eine gemeinsame Infrastruktur im wissenschaftlichen und administrativen Bereich zu. Die beiden Institute beschäftigen insgesamt über 300 Mitarbeiter aus 30 Nationen und sind Mitglied des Campus Vienna Biocenter.

Über den Campus Vienna Biocenter:

Der Campus Vienna Biocenter ist mit rund 1.000 Wissenschaftern und Wissenschafterinnen aus 40 Nationen in 16 Organisationen einer der größten F&E-Cluster Österreichs. Akademische Departments (Universität Wien, Medizinische Universität Wien, zusammengefasst in den Max F. Perutz Laboratories), private Forschungsinstitute (IMP - Institut für Molekulare Pathologie) und Institute der Österreichischen Akademie der Wissenschaften (IMBA - Institut für Molekulare Biotechnologie, GMI - Gregor Mendel-Institut) sind hier ebenso angesiedelt wie kommerzielle F&E sowie Dienstleistungsunternehmen und Ausbildungslehrgänge (www.viennabiocenter.com).

Mit freundlicher Unterstützung durch innovatives-oesterreich.at, die Agentur PR&D, den Verein Campus Vienna Biocenter und dialoggentechnik.

Wissenschaftlicher Kontakt:
Dr. Thomas C. Marlovits
IMP-IMBA Research Center
A-1030 Wien
T +43 / 1 / 79730-358
E marlovits@imp.univie.ac.at
Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Michaela Fritsch | PR&D
Weitere Informationen:
http://www.imp.ac.at/events/ev_hp.html
http://www.imba.oeaw.ac.at/press-releases
http://www.viennabiocenter.com

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie