Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schritt der komplizierten Ribosomen-Entstehung im Reagenzglas nachvollzogen

01.06.2006
Heidelberger Forscher Ed Hurt und Thorsten Schäfer aus dem Biochemie-Zentrum der Universität Heidelberg veröffentlichen neue Ergebnisse am 1. Juni 2006 in "Nature"

Bei der Genexpression werden die Gene im Zellkern zur Boten-RNA (mRNA) abgeschrieben. Diese Vorstufen-mRNAs gelangen nach mehreren Reifungsschritten ins Zytoplasma der Zelle, wo sie von den Eiweiß-produzierenden Maschinen, den Ribosomen, zu Proteinen umgesetzt (translatiert) werden. Ribosomen bestehen aus der großen 60S- und kleinen 40S-Untereinheit. Wie die Entstehung der mRNA, läuft die Synthese und der Zusammenbau der Ribosomen im Zellkern ab. Die noch nicht fertigen Vorläufer-Ribosomen gelangen schließlich ins Zytoplasma, um dort endgültig zu den funktionsfähigen 60S- und 40S-Untereinheiten umgebaut zu werden.

Jetzt konnte zum ersten Mal ein einzelner Reifungsschritt der 40S-Untereinheit im Reagenzglas studiert werden, bei dem die kleine ribosomale Untereinheit ihren typischen "Schnabel" entwickelt. Bei der Ausbildung dieses Strukturelements wurde das ribosomale Protein Rps3, das sich in unmittelbarer Nähe zum Schnabel befindet, fest in die kleine Untereinheit eingebaut. Zuständig für den Ablauf der Schnabelbildung zur richtigen Zeit und am richtigen Ort ist die Proteinkinase Hrr25, die mit der sich entwickelnden Prä-40S-Untereinheit assoziiert ist und regulierend in diesen Vorgang eingreift. Warum der Schnabel sich bei der 40S-Untereinheit erst nach dem Transport aus dem Zellkern ins Zytoplasma ausbildet, ist noch nicht klar, aber eine sperrige 40S-Untereinheit mit ausgestelltem Schnabel würde möglicherweise nicht gut durch den Kernporenkanal passen. Die Kernporen in der Kernhülle arbeiten wie Schleusen, durch die alle Transportgüter einschließlich der nicht reifen ribosomalen Untereinheiten auf dem Weg vom Zellkern ins Zytoplasma hindurchtreten müssen.

Der volle Text erscheint am 1. Juni 2006 in "Nature".

Thorsten Schäfer (1), Bohumil Maco (2), Elisabeth Petfalski (3), David Tollervey (3), Bettina Bottcher (4), Ueli Aebi (2) & Ed Hurt (1)

1. Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
2. M. E. Muller Institute for Structural Biology, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
3. Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK

4. EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany

Rückfragen bitte an:
Prof. Dr. Ed Hurt
cg5@ix.urz.uni-heidelberg.de
Dipl.-Biochem. Thorsten Schäfer
Thorsten.Schaefer@urz.uni-heidelberg.de
Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: 40S-Untereinheit Reagenzglas Ribosom Untereinheit Zellkern Zytoplasma

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nano-U-Boot mit Selbstzerstörungs-Mechanismus
30.05.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Detaillierter Blick auf molekularen Gifttransporter
30.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Center Smart Materials CeSMa erhält SilverStar Förderpreis 2017 für innovativen Druckmessstrumpf

30.05.2017 | Förderungen Preise

Alternative Nutzung von Biogasanlagen – Wachse aus Biogas für die Kosmetikindustrie

30.05.2017 | Biowissenschaften Chemie

Detaillierter Blick auf molekularen Gifttransporter

30.05.2017 | Biowissenschaften Chemie