Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schritt der komplizierten Ribosomen-Entstehung im Reagenzglas nachvollzogen

01.06.2006
Heidelberger Forscher Ed Hurt und Thorsten Schäfer aus dem Biochemie-Zentrum der Universität Heidelberg veröffentlichen neue Ergebnisse am 1. Juni 2006 in "Nature"

Bei der Genexpression werden die Gene im Zellkern zur Boten-RNA (mRNA) abgeschrieben. Diese Vorstufen-mRNAs gelangen nach mehreren Reifungsschritten ins Zytoplasma der Zelle, wo sie von den Eiweiß-produzierenden Maschinen, den Ribosomen, zu Proteinen umgesetzt (translatiert) werden. Ribosomen bestehen aus der großen 60S- und kleinen 40S-Untereinheit. Wie die Entstehung der mRNA, läuft die Synthese und der Zusammenbau der Ribosomen im Zellkern ab. Die noch nicht fertigen Vorläufer-Ribosomen gelangen schließlich ins Zytoplasma, um dort endgültig zu den funktionsfähigen 60S- und 40S-Untereinheiten umgebaut zu werden.

Jetzt konnte zum ersten Mal ein einzelner Reifungsschritt der 40S-Untereinheit im Reagenzglas studiert werden, bei dem die kleine ribosomale Untereinheit ihren typischen "Schnabel" entwickelt. Bei der Ausbildung dieses Strukturelements wurde das ribosomale Protein Rps3, das sich in unmittelbarer Nähe zum Schnabel befindet, fest in die kleine Untereinheit eingebaut. Zuständig für den Ablauf der Schnabelbildung zur richtigen Zeit und am richtigen Ort ist die Proteinkinase Hrr25, die mit der sich entwickelnden Prä-40S-Untereinheit assoziiert ist und regulierend in diesen Vorgang eingreift. Warum der Schnabel sich bei der 40S-Untereinheit erst nach dem Transport aus dem Zellkern ins Zytoplasma ausbildet, ist noch nicht klar, aber eine sperrige 40S-Untereinheit mit ausgestelltem Schnabel würde möglicherweise nicht gut durch den Kernporenkanal passen. Die Kernporen in der Kernhülle arbeiten wie Schleusen, durch die alle Transportgüter einschließlich der nicht reifen ribosomalen Untereinheiten auf dem Weg vom Zellkern ins Zytoplasma hindurchtreten müssen.

Der volle Text erscheint am 1. Juni 2006 in "Nature".

Thorsten Schäfer (1), Bohumil Maco (2), Elisabeth Petfalski (3), David Tollervey (3), Bettina Bottcher (4), Ueli Aebi (2) & Ed Hurt (1)

1. Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
2. M. E. Muller Institute for Structural Biology, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
3. Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK

4. EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany

Rückfragen bitte an:
Prof. Dr. Ed Hurt
cg5@ix.urz.uni-heidelberg.de
Dipl.-Biochem. Thorsten Schäfer
Thorsten.Schaefer@urz.uni-heidelberg.de
Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: 40S-Untereinheit Reagenzglas Ribosom Untereinheit Zellkern Zytoplasma

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik