Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der TU Dresden mit neuen Innovationsansätzen in der Nanotechnologie: Chemiker sucht nach neuen Formen der Materie

29.05.2006
"Wenn man Menschen einsperrt, werden sie beginnen, sich ungewöhnlich zu verhalten. Bei Elektronen ist das nicht anders" sagt Michael Ruck, Professor für Anorganische Chemie an der Technischen Universität Dresden.

Der Forscher beschäftigt sich mit der Entwicklung neuer Substanzen, in denen die Beweglichkeit von Elektronen so eingeschränkt wird, dass daraus spezielle Eigenschaften hinsichtlich Magnetismus oder elektrischer Leitfähigkeit der Stoffe resultieren. Das wiederum könnte eine extreme Miniaturisierung ermöglichen, wodurch stecknadelkopfkleine Handys oder Hochleistungsrechner im Hosentaschenformat denkbar sind. Denn was heute noch in hochkomplexen mikroelektronischen Systemen mit einer Vielzahl von Schaltelementen erreicht wird, könnte übermorgen von wenigen Bauteilen geleistet werden.

Gegenwärtig müssen zum Beispiel Festplatten noch aus verschiedenen Bauteilen zusammengesetzt werden, um eine effektive Arbeitsweise zu erreichen. Wenn es gelingt Verbindungen herzustellen, die bereits in sich selbst strukturiert funktionale Eigenschaften haben, könnten Materialen und damit Zeit-, Geld- und Raumersparnisse in einem bisher nicht erreichten Umfang möglich werden.

Der Fokus von Professor Rucks Grundlagenforschung liegt auf der Festkörperchemie im Bereich zwischen Metallen und Halbleitern. Dem Spielen mit einem Lego-Kasten ähnlich kombiniert der Wissenschaftler verschiedene Stoffe miteinander und untersucht die entstandenen Substanzen auf ihre Eigenschaften. Ziel ist die Entwicklung hochkomplexer und funktionstragender Materialien. Im Blickpunkt stehen vor allem die für die elektrische Leitfähigkeit verantwortlichen Elektronen. Diese können durch innere Energiebarrieren an ihrer freien Beweglichkeit gehindert bzw. in vorgegebene Bahnen gezwungen werden, was Magnetwiderstand oder richtungsabhängige Leitfähigkeit bewirken kann.

Die Ergebnisse der Untersuchungen könnten vor allem im Bereich der Mikroelektronik Anwendung finden und werden auf Grund ihrer großen wissenschaftlichen Bedeutung von der internationalen Forscherwelt stetig verfolgt. "Wir können die Materie gestalten. Gelingt uns das in gewünschter Weise, wäre nicht nur eine Optimierung, sondern ein ganz neue Qualität in der Mikroelektronik möglich", so der Dresdner Chemiker.

Weitere Informationen: Prof. Dr. Michael Ruck, Tel. 0351 463-33244, E-Mail: michael.ruck@chemie.tu-dresden.de

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.chm.tu-dresden.de/anorg

Weitere Berichte zu: Chemiker Elektron Leitfähigkeit Materie Mikroelektronik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten