Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Industrielle Biotechnologie Nord (IBN)

29.05.2006
Ein Bündnis für die Weiße Biotechnologie im Norden
Der Norden holt auf. Mit der Initiative Industrial Biotechnology North (IBN) stellen Experten aus Hochschulen und Industrie das große Potenzial der Weißen Biotechnologie in den Bundesländern Hamburg und Schleswig-Holstein unter Beweis. Die Weiße Biotechnologie, im internationalen Sprachgebrauch häufig auch als Industrielle Biotechnologie (industrial biotechnology) bezeichnet, spielt schon heute ein herausragende Bedeutung bei der nachhaltigen Herstellung von (Fein-) Chemikalien, Wirkstoffen, Lebens- und Futtermitteln neuen Materialien und Treib-stoffen aus nachwachsenden Rohstoffen. Als Zweig der modernen Life Sciences kommen in der Weißen Biotechnologie intakte Mikroorganismen (Ganzzellbiotran-formation) oder deren Enzyme als Biokatalysatoren zum Einsatz.

Die Gründungsveranstaltung am heutigen Tag stellte die in Entstehung begriffenen Netzwerke und ihre Partner vor und zeigte einen wichtigen Beitrag zur länderübergrei-fenden Vernetzung von Wissenschaft und Wirtschaft.

Die Initiatoren der "Industriellen Biotechologie Nord" sind TuTech Innovation GmbH/Hamburg Innovation GmbH, Innovationsstiftung Schleswig-Holstein und das Institut für Technische Mikrobiologie der Technischen Universität Hamburg-Harburg (TUHH).

Dem neuen Netzwerk "IBN" können sich Firmen sowie Forschungsinstitute aus Nord-deutschland anschließen.

Auf Initiative der Innovationsstiftung Schleswig-Holstein und der TuTech Innovation GmbH trafen sich im November 2005 in Kiel erstmalig Experten aus beiden Bundeslän-dern, um über aktuelle Forschungsergebnisse auf dem Gebiet der Weißen Biotechnolo-gie zu berichten und weitere Potenziale zu erschließen. In Schleswig-Holstein und Hamburg sind momentan rund 110 Firmen (Zahl aus aktuellen Branchenführern) Fir-men in den Bereichen Biokatalyse, Enzyme, Feinchemie, Lebensmittel, Futtermittel und Kosmetik, also den Kernbereichen der Weißen Biotechnologie tätig. Hinzu kommen zahlreiche renommierte Arbeitsgruppen an den Universitäten und Fachhochschulen beider Bundesländer. Über eines waren sich die Experten in Kiel einig: Die Weiße Biotechnologie im Norden hat ein immenses Potenzial. Sie leidet aber auch an einem Visi-bilitätsproblem. So werden unter dem Begriff der Life Sciences gerade im Norden häufig nur die medizinische Biotechnologie und Medizintechnik zusammengefasst (Rote Bio-technologie). Die Weiße Biotechnologie hingegen wird nicht als eigenständige Disziplin wahrgenommen.

Mit der Gründung von IBN soll daher folgendes erreicht werden:

o Erhöhung der Visibilität und Stärkung der Weißen Biotechnologie in der Nord-deutschen Region

o Vernetzung der wissenschaftlichen und wirtschaftlichen Aktivitäten auf dem Ge-biet der industriellen Biotechnologie in Hamburg und Schleswig

o Interessensvertretung gegenüber Politik und Förderinstitutionen auf regionaler, nationaler und europäischer Ebene

o Initiierung und Unterstützung von Kooperationsprojekten zwischen Wissenschaft und Wirtschaft

Das Angebot von IBN richtet sich dabei an alle wissenschaftlichen Institute und Hoch-schulen sowie an Wirtschaftsunternehmen und Organisationen der Wirtschaftsförde-rung.

IBN ist organisatorisch an die TuTech Innovation GmbH angebunden und wird nach außen durch ein vierköpfiges Programm-Komitee und dessen Sprecher, Professor Garabed Antranikian (Technischen Universität Hamburg-Harburg), vertreten. Zum Gründungstreffen am 29. Mai an der Technischen Universität Hamburg-Harburg werden der IBN-Sprecher Professor Antranikian und die Sprecher der Fachausschüsse das Konzept und die Ziele der neuen Initiative vorstellen.

Erste gemeinsame Projekte wurden bereits initiiert. So kooperieren ab dem 1. Juni 2006 die Institute für Technische Mikrobiologie und Thermische Verfahrenstechnik an der Technischen Universität Hamburg-Harburg mit dem Schleswig-Holsteinischen Unter-nehmen Stern Enzym GmbH (Ahrensburg) auf dem Gebiet der Bioethanolerzeugung aus nachwachsenden Rohstoffen. Ziel ist es, neuartige Enzymsysteme bereitzustellen, die die Ethanolausbeute aus cellulosehaltigem Pflanzenmaterial erhöhen. Das Projekt hat ein Gesamtvolumen von 1,1 Mio. Euro und wird mit 460.000 Euro von der Deut-schen Bundesstiftung Umwelt (DBU) gefördert.

Über IBN

o Mitglieder des Programm-Komitees: Prof. Garabed Antranikian (Sprecher, TU Hamburg-Harburg), Dr. Lutz Popper (Stern-Wywiol Gruppe Holding GmbH & Co. KG, Hamburg), Dr. André Rieks (Dr. Rieks Healthcare GmbH, Uetersen), Prof. Ruth Schmitz-Streit (Universität Kiel)

o Fachausschüsse: Biokatalyse und Feinchemie (Sprecher: Prof. Andreas Liese, TU Hamburg-Harburg), Bioenergie (Sprecher: Prof. Hartung, Universität Kiel), Funktionelle Makromoleküle (Sprecher: Dr. Matthias Wilmanns, EMBL Ham-burg), Systembioengineering (Sprecher: Prof. An-Ping Zeng, TU Hamburg-Harburg), Bioinformatik (Sprecher: Prof. Matthias Rarey, Universität Hamburg), Verfahrenstechnik (Sprecher: Prof. Bernd Niemeyer, Helmut-Schmidt-Universität), Lebensmitteltechnologie (Sprecher: Prof. Knut Heller, Bundesfor-schungsanstalt für Ernährung und Lebensmittel)

o Gründung am 29. Mai 2006

Über die Weiße Biotechnologie

Biokatalysatoren - Motor der Weißen Biotechnologie

Den Motor der Weißen Biotechnologie bilden die Biokatalysatoren, also stoffwechselaktive Mikroorganismen (Ganzzellbiokatalyse) und Enzyme. Die große Diversität in der Physiologie und Enzymausstattung dieser Kleinstlebewesen versetzt uns in die Lage, biotechnologische Verfahren zur Herstellung von Grund- und Feinchemikalien mit hoher Effizienz zu entwickeln. Durch Ganzzellbiotransformationen können Zucker oder kom-plexere Kohlenhydrate (Stärke, Cellulose) aus nachwachsenden Rohstoffen zu Wert schöpfenden Produkten (Vitamine, Aminosäuren, Ethanol, Kosmetika) umgesetzt werden, ohne dabei auf Schwermetallkatalysatoren oder aggressive Lösungsmittel angewiesen zu sein.
Enzyme sind als katalytisch aktive Proteine in der Lage, sehr komplexe biochemische Reaktionen durchzuführen. Sie ermöglichen (bio-)chemische Umsetzungen in zellfreien Systemen, sind also auch außerhalb der lebenden Zelle aktiv. In enzymkatalysierten Umsetzungen wird eine Ausgangssubstanz in einem oder mehreren Schritten in ein hochwertiges Endprodukt umgewandelt. Enzyme spielen insbesondere eine herausragende Rolle bei der Herstellung von hoch reinen chemischen Substanzen, wie sie beispielsweise in der Arzneimittelherstellung benötigt werden. Biokatalysatoren arbeiten in der Regel präziser als chemische Katalysatoren, da sie eine höhere Selektivität aufwei-sen, d.h. nur bestimmte Ausgangsprodukte zu definierten Produkten umsetzen. Ein weiterer Vorteil von Enzymen ist ihre Enantioselektivität, die es ermöglicht, die Produktsicherheit beispielsweise in der Pharamaindustrie signifikant zu erhöhen. In der klassischen chemischen Synthese müssen die unerwünschten Enantiomere durch aufwändige Techniken aus dem Produkt entfernt werden.

Wirtschaftliche Bedeutung der Weißen Biotechnologie

Die Weiße Biotechnologie nimmt innerhalb der nachhaltigen Chemie eine immer wichtigere Rolle ein, wie auch aktuelle Zahlen belegen. So beträgt der weltweite Umsatz an Enzymen ca. 5 Mrd. € bei einer jährlichen Wachstumsrate von 5-10%. Das Marktvolumen der mit Hilfe von Enzymen erzeugten Produkte liegt bei etwa 150 Mrd. € pro Jahr. Die Haupteinsatzgebiete für Enzyme sind Waschmittel (32%), technische Prozesse (20%) und die Herstellung von Lebensmitteln (33%) und Futtermitteln (11%).

Laut einer Studie von McKinsey & Company beträgt der Umsatz der mit Hilfe biotechnologischer Verfahren erzeugten chemischen Produkte rund 30 Mrd. €. Nach aktuellen Prognosen sollen im Jahr 2010 rund 20% aller Chemieprodukte in einer Größenordnung von rund 310 Mrd. US-Dollar auf biotechnologischem Weg hergestellt werden. Insbesondere bei der Produktion von Feinchemikalien (Aminosäuren, Wirkstoffe), Polymeren (auf Basis nachwachsender Rohstoffe), von Spezialchemikalien für die Lebensmittel-, Kosmetik-, Textil- und Lederindustrie sowie von Bulkchemikalien und Buil-ding Blocks wird die industrielle Biotechnologie zukünftig ökonomisch und ökologisch überlegene Konzepte anbieten. Die entscheidenden Triebkräfte für einen Wechsel zu biotechnologischen Produktionsverfahren sind:

o Einsparung von Rohstoffen und Energie
o Prozessvereinfachung: Ersatz mehrstufiger chemischer Syntheseverfahren durch biotechnologische Verfahren (Fermentation bzw. enzymatische Synthese)
o Optimierung der Produktaufarbeitung und -reinigung im Vergleich zu chemischen Syntheseverfahren
o Vermeidung bzw. Reduktion von Neben- und Abfallprodukten

Rückfragen: Rüdiger Bendlin, Tel. 040/42878-3330

Rüdiger Bendlin | idw
Weitere Informationen:
http://www.tu-harburg.de

Weitere Berichte zu: Antranikian Biokatalysator Biotechnologie Enzym Futtermittel IBN Rohstoff TuTech

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikro-U-Boote für den Magen

24.01.2017 | Biowissenschaften Chemie

Echoortung - Lernen, den Raum zu hören

24.01.2017 | Biowissenschaften Chemie

RWI/ISL-Containerumschlag-Index beendet das Jahr 2016 mit Rekordwert

24.01.2017 | Wirtschaft Finanzen