Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn schützt sich selber vor Reizüberflutung

19.05.2006
In den Nervenzellen der Hirnrinde werden sowohl Impulse aus den Sinnesorganen als auch Erinnerungen verarbeitet. Berner Forscher haben nun herausgefunden, dass Nervenzellen auch als "Unterdücker" von bestimmten Impulsen fungieren. Ohne diese hemmende Funktion wäre unser Gehirn von den dauernden Informationsströmen überfordert. Die Forschungsergebnisse werden in der aktuellen Ausgabe des renommierten Journals "Neuron" als Titelgeschichte publiziert.

Die Hirnrinde besteht aus einer wenige Millimeter dünnen Schicht aus Nervenzellen und ist für die Verarbeitung von unzähligen Nervensignalen zuständig. Einerseits erhalten grosse Nervenzellen, die sogenannten Pyramidenzellen, Signale aus den Sinnesorganen. Andererseits erhalten sie auch Informationen aus anderen Hirnarealen wie Erinnerungen, um die Sinnesinformationen richtig interpretieren und weiterleiten zu können. Impulse aus den Sinnesorganen werden als sogenannte "Bottom-up-Information" bezeichnet, solche aus übergeordneten Hirnbereichen wie Erinnerungen als "Top-down-Information". Diese getrennten Informationsströme erregen die Pyramidenzellen in zwei verschiedenen Bereichen, die eine unterschiedliche Struktur und Funktion aufweisen. Erhält eine Nervenzelle jedoch gleichzeitig Informationen aus einem Sinnesorgan und übergeordneten Hirnarealen, muss sie "umdisponieren": Den gleichzeitigen Eingang von "Top-down-" und "Bottom-up-Information" beantwortet die Pyramidenzelle mit einem stark erhöhten Erregungszustand, der durch einen Einstrom von Kalzium-Ionen in die Pyramidenzelle ausgelöst wird.


Modell einer Pyramidenzelle mit Messelektroden, die über ihre Verästelungen, sogenannte Dendriten, gleichzeitig "Top-down-" (rot) und "Bottom-up-Information" (gelb) erhält. Der blaue Teil kennzeichnet Dendriten, die noch sehr wenig erforscht sind und in der vorliegenden Arbeit nicht berücksichtigt wurden. Bild: Institut für Physiologie, Bern.

Prof. Matthew Larkum und sein Mitarbeiter am Institut für Physiologie der Universität Bern konnten nun erstmals zeigen, dass hemmende Nervenzellen in der Hirnrinde "Top-down"-Signale selektiv unterdrücken können. Diese hemmenden Nervenzellen schütten eine chemische Substanz aus (GABA=Gamma-Amino-Buttersäure), welche über spezifische Rezeptoren den Kalziumeinstrom in die Pyramidenzellen verhindern. Die "Top-down-Information" wird somit vollständig unterdrückt. In mehrjähriger Arbeit gelang es den Forschern, die zellulären und molekularen Prozesse, welche diesem Veto-Mechanismus zugrunde liegen, zu charakterisieren.

Unterdrückte Impulse ermöglichen eine bewusste Wahrnehmung

Diese bahnbrechende Arbeit erlaubt eine neue Sicht auf die Funktionsweise des Gehirns. "Wir konnten aufzeigen, wie hoch spezifisch, zeitlich und räumlich präzise orchestriert die Hemmungsmechanismen im Gehirn eingesetzt werden, um den ununterbrochenen Erregungsstrom aus den Sinnesorganen und den höheren Hirnregionen zu regulieren", erklärt Prof. Hans-Rudolf Lüscher vom Institut für Physiologie. Diese Vorgänge erlauben eine gerichtete Aufmerksamkeit sowie die Einbindung von Sinneseindrücken zu einer einheitlichen Wahrnehmung. "Ohne diese Hemmungsmechanismen", so Lüscher, "wären alle sensorischen Hirnrindenareale maximal erregt, ähnlich einem elektrischen Gewitter". Dies würde eine bewusste und differenzierte Wahrnehmung unserer Umwelt verunmöglichen. Aufbauend auf diesen Resultaten, welche an einem In Vitro-Präparat gewonnen wurden, will die Forschergruppe um Prof. Larkum in Zukunft untersuchen, wie diese zellulären Mechanismen das Verhalten eines intakten Organismus beeinflussen.

Nervenzellen: bestens vernetzt

Die menschliche Hirnrinde bedeckt das Gehirn und besteht aus einer wenige Millimeter dicken Schicht von Nervenzellen. In dieser hochkomplexen Struktur verarbeitet das Gehirn den ununterbrochenen Zustrom von Nervensignalen aus den Sinnesorganen und konstruiert daraus ein Abbild der Welt, die uns umgibt. Eindrücke von Farbe, Form oder Bewegung werden in verschiedenen, teilweise weit auseinander liegenden Hirnarealen verarbeitet. Damit im Gehirn eine einheitliche Wahrnehmung zustande kommt, müssen die elementaren Sinnesinformationen (wie z.B. Farbe, Form usw.) zu einer übergeordneten, funktionellen Einheit zusammengebunden werden. Dieses Zusammenführen der verschiedenen Informationsströme wird durch einen zellulären Mechanismus realisiert, der die Nervenzellen in einen speziellen Zustand versetzt, sobald sie Informationen aus unterschiedlichen Hirnstrukturen gleichzeitig erhalten. Die Sinnesinformation wird auch anhand von Erfahrungen aus dem Gedächtnis interpretiert. Zudem wird uns nicht jede Sinnesinformation auch bewusst, sondern nur diejenige, worauf das Gehirn seine Aufmerksamkeit lenkt.

Nathalie Matter | idw
Weitere Informationen:
http://www.kommunikation.unibe.ch/medien/mitteilungen/news/2006/neuronen.html
http://www.neuron.org/content/current

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften