Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schritt für Schritt die Scheinfüßchen entschlüsseln - Neuer Komplex bei Einzellern und menschlichen Zellen gefunden

11.05.2006
Scheinfüßchen sind das Mittel der Wahl zur Fortbewegung und Nahrungsaufnahme bei einigen Amöben, anderen Einzellern sowie bestimmten Immunzellen. Als eine Variante dieser Pseudopodien sind auch die fadenförmigen Filopodien Ausstülpungen der Zellen. Sie enthalten gebündelte Filamente aus Aktin, einer der wichtigsten Komponenten des Zytoskeletts.

Diese außerordentlich flexible und sich ständig verändernde Struktur übernimmt in Zellen - auch denen des Menschen - Transportprozesse und verleiht ihnen Stabilität. Einzelne Aktinmoleküle schließen sich zu langen Filamenten zusammen, die dann mit Hilfe so genannter Aktin bindender Proteine gebündelt werden können. Das Team um Professor Michael Schleicher vom Adolf-Butenandt-Institut der Ludwig-Maximilians-Universität (LMU) München und Dr. Jan Faix, jetzt Universität Hannover, zeigte nun, dass das Protein VASP sehr viel wichtiger ist als bislang angenommen, wie in der aktuellen Ausgabe der "Proceedings of the National Academy of Sciences" (PNAS) berichtet. "Wir haben uns VASP in der Bodenamoebe Dictyostelium discoideum und auch in menschlichen Zellen angesehen", so Schleicher. "In beiden Fällen war das Protein essentiell für den Aufbau und die anschließende Bündelung der Aktinfilamente."

Pseudopodien sind Ausstülpungen der betreffenden Zellen, mit deren Hilfe sich diese fortbewegen und Nahrung aufnehmen können. Typisch dafür sind eine veränderliche Körperstruktur mit eher formlos wirkenden Fortsätzen, die ein fließendes Vorwärtskommen ermöglichen - eine im Wortsinne "amöboide" Bewegung. Wichtig für den Menschen ist dies bei bestimmten Immunzellen. Die Makrophagen etwa kommen nur mit Hilfe ihrer Pseudopodien voran und nutzen sie auch, um Krankheitserreger zu umschließen und letztlich aufzunehmen. Die Fibroblasten dagegen nutzen für die Fortbewegung fokale Kontakte, um beispielsweise in Wunden zu wandern und diese verschließen zu können. Bei ihnen finden sich unter anderem auch die charakteristisch fadendünnen Filopodien. Diese sind nur eine Variante der verschiedenen Pseudopodien, die alle auf das Zytoskelett für Stabilität und Flexibilität angewiesen sind. Dieser wichtige Bestandteil von Einzellern und den Zellen höherer Lebewesen kann seine verschiedenen Funktionen nur mit Hilfe einer Vielzahl von Komponenten erfüllen. Aktin ist essentiell, wobei das einzelne Aktin-Molekül nicht viel vermag. Erst im Verband als Filament, entstanden aus einer Unmenge linear angeordneter Einzelmoleküle, kann Aktin seine Aufgaben übernehmen.

Dabei zeigt sich eine besondere Dynamik: Aktinfilamente "wachsen" überwiegend nur in eine Richtung und werden am anderen Ende kontinuierlich abgebaut - wenn dies nicht extra verhindert wird. So genannte verkappende Proteine, die "capping proteins", können ein Aktinfilament in beide Richtungen stabilisieren. Wenn sie sich an einem Ende anlagern, verhindern sie entweder ein weiteres Anwachsen oder den Abbau. Eine Vermutung war, dass VASP Aktinfilamente vor diesen "capping proteins" schützen könnte, so dass der Anbau zusätzlicher Aktinmoleküle erfolgen kann. Das allerdings wurde durch die vorliegende Arbeit widerlegt. Die Wissenschaftler zeigten vielmehr, dass VASP an das Protein dDia2, dessen Rolle bei der Bündelung von Aktinfilamenten ebenfalls von der Schleicher-Gruppe nachgewiesen worden war, bindet. Auch der Hinweis auf die Verbindung dieser beiden Proteine macht eine Rolle von VASP bei der Entfernung der "capping proteins" sehr unwahrscheinlich. Von dDia2 ist bereits bekannt, dass es in den Spitzen der wachsenen Filopodien liegt und außerdem nötig ist für das Anwachsen der Aktinfilamente. Auch von VASP gab es Ergebnisse in vitro, die eine Bindung an Aktinmoleküle sowie eine Rolle bei der Initiierung des Aufbaus von Filamenten und deren Bündelung zeigen.

Widersprüchlich waren da nur Hinweise, die eine Interaktion von VASP mit den "capping proteins" vermuten ließen. "Das konnten wir aber eindeutig widerlegen und vielmehr zeigen, dass VASP sowohl in der Bodenamoebe als auch in menschlichen Zellen die Bildung von Aktinfilamenten anregt und diese dann bündelt", so Schleicher. "Der Komplex aus dDia2 und VASP sitzt in der Spitze von Filopodien, und wir vermuten, dass diese beiden Proteine dort die Aktindynamik in den Filopodien kontrollieren." Der Komplex bleibt sogar an dieser Stelle, während die Aktinfilamente noch aufgebaut werden - und wird wahrscheinlich mit der Filopodienspitze zusammen voranbewegt. Was noch fehlt, ist der Nachweis, dass VASP nicht nur in vitro, sondern auch in der Zelle die Bildung von Aktinfilamenten initiieren kann. "Besonders interessant war jetzt aber schon zu sehen, dass sich die VASP-Proteine aus der relativ einfachen Bodenamoebe und den menschlichen Zellen praktisch identisch verhalten", meint Schleicher. "Das erlaubt die äußerst verführerische Spekulation, dass der Komplex aus VASP und einem Formin wie dDia2 ein in der Evolution konservierter Mechanismus der Filopodienbildung ist - von den Einzellern bis zum Menschen."

Ansprechpartner:

Prof. Dr. Michael Schleicher
Adolf-Butenandt-Institut der LMU
Tel.: 089-2180-75876
Fax: 089-2180-75004
E-Mail: schleicher@lrz.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://zellbio.web.med.uni-muenchen.de
http://www.uni-muenchen.de/

Weitere Berichte zu: Aktin Aktinfilament Einzellern Filament Filopodien Komplex Protein VASP

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics