Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsteilung lässt Bakterien schneller wachsen

08.05.2006
Manche Bakterien nutzen ihre Nahrung so schlecht, dass von ihrem "Stoffwechselmüll" noch andere Mikroben leben können. Biologen der Universitäten Bonn und Barcelona haben nun einen möglichen Grund für diese Ineffizienz entdeckt. Demnach wachsen Bakterien unter Umständen schneller, wenn sie nicht das letzte Quäntchen Energie aus ihrer Nahrung pressen, sondern "kurze" Stoffwechselwege bevorzugen.

Es gibt daher viele Stoffwechselwege, die augenscheinlich immer in Arbeitsteilung durchgeführt werden. Die Wissenschaftler postulieren jedoch, dass es auch in diesen Fällen in der Natur "Komplett-Verwerter" geben müsse - und erklären, wie man sie finden kann. Die Studie ist jetzt in der Zeitschrift "Trends in Microbiology" erschienen.

Wenn der Kamin nicht richtig zieht, bleibt jede Menge Asche und angekohltes Holz zurück. Ähnlich ineffizient gehen manche Bakterien mit ihrem Brennstoff um - beispielsweise die so genannten "Nitrifizierer": Sie "verbrennen" Ammoniak zu Nitrit. Das enthält aber immerhin noch soviel Energie, dass es einer zweiten Nitrifizierer-Gruppe als Nahrung dient: Diese setzt es zum Endprodukt Nitrat um. Bislang wurde noch kein Mikroorganismus entdeckt, der Ammoniak direkt zu Nitrat umsetzt. Bekannt ist das schon seit 1890, eine gute Erklärung dafür steht jedoch noch aus.

Eine solche meint Dr. Jan Kreft zusammen mit Kollegen aus Barcelona nun gefunden zu haben. In einer kürzlich veröffentlichten Studie zeigt der Mitarbeiter der Theoretischen Biologie, dass kurze Stoffwechselwege einen evolutiven Vorteil darstellen können - und zwar aus zwei Gründen: "Zunächst einmal wird jeder Stoffwechselschritt in Organismen durch ein spezifisches Zelleiweiß katalysiert, ein Enzym", erläutert Kreft. "Die Zellmaschinerie kann aber nur eine bestimmte Enzymmenge pro Zeiteinheit synthetisieren. Für eine Reaktionskette von fünf Schritten muss das Bakterium fünf Enzyme herstellen, bei zehn Schritten entsprechend zehn. Dazu benötigt die Zelle natürlich länger: Sie produziert in derselben Zeit von jedem Enzym weniger Kopien." Folge: Der Durchsatz durch die Stoffwechselkette sinkt.

Dazu kommt das Problem mit den Zwischenprodukten - je mehr Glieder die Stoffwechselkette hat, desto mehr Schwund: Zwischenprodukte können mit anderen Substanzen in der Zelle reagieren oder sonstwie verloren gehen. Mitunter stören sie die geregelten Abläufe in der Zelle und wirken giftig. Kurz: "Zwischenprodukte verursachen Kosten", sagt Kreft. "Ein Bakterium wird daher versuchen, ihre Gesamt-Konzentration möglichst niedrig zu halten - je länger die Kette, desto niedriger die Konzentration der einzelnen Zwischenprodukte." Das bremst den Durchsatz zusätzlich aus. Krefts Fazit: "Ein zusätzlicher Schritt lohnt nur, wenn dabei viel zusätzliche Energie herausspringt. Die Umsetzung von Nitrit zu Nitrat bringt für den Aufwand einfach nicht genug ein." Nitrifizierer, die sich die Arbeit teilen, wachsen daher schneller als "Komplett-Verwerter" und setzen sich normalerweise durch - und das, obwohl sie so schlechte Futterverwerter sind.

Wenn Nahrung ein knappes Gut ist, können sich Bakterien diesen Luxus aber nicht leisten. Das ist beispielsweise in so genannten "Biofilmen" der Fall - "das sind Bakterienbeläge, wie sie zum Beispiel auf Steinen in Flüssen oder Kläranlagen vorkommen", erklärt der Biologe. Die Mikroben in derartigen Schichten sind relativ unbeweglich; zudem ist das Nahrungsangebot gerade in tieferen Bereichen begrenzt. Wenn nun ein Bakterium die Nahrung unvollständig nutzt, um dadurch schneller wachsen zu können, setzt es mehr Nahrung weniger effizient um, weshalb in seiner Umgebung die Nährstoffkonzentration stärker abnimmt: Seinen Nachbarn (die ja durch Teilung aus ihm hervorgegangen sind) und ihm selbst droht die Hungersnot.

Der "Stinkende Komplettverwerter" schont seine Ressourcen

"Spar-Bakterien", die durch längere Stoffwechselwege langsamer wachsen, dafür aber effizienter mit den Ressourcen umgehen, lassen für ihre Nachbarn dagegen mehr übrig. In Biofilmen sollten Komplettverwerter daher einen Selektionsvorteil haben, weil sie noch das letzte Quentchen Energie aus ihrer Nahrung herauskitzeln. "Um Bakterien zu finden, die den kompletten Weg vom Ammoniak zum Nitrat katalysieren, muss man wahrscheinlich in Biofilmen suchen", sagt Kreft.

Dass er und seine Kollegen Recht haben könnten, beweist eine Mikrobe namens "Holophaga foetida". Der "stinkende Komplettverwerter" (so die deutsche Bezeichnung) verwertet ringförmige (aromatische) Kohlenstoff-Verbindungen und nutzt dazu einen relativ langen Stoffwechselweg. Holophaga wächst langsam und kommt vor allem in Sedimenten vor, wo er wahrscheinlich in Biofilmen wächst. Er hat zwei Konkurrenten, die denselben Prozess arbeitsteilig in zwei Schritten durchführen. Diese vermehren sich schneller als Holophaga, sind aber dennoch seltener - eventuell wegen der schlechteren Futterverwertung.

Costa E, Perez J, Kreft JU (2006). Why is metabolic labour divided in nitrification? Trends in Microbiology 14: published online ahead of print

Weitere Infos unter: http://www.theobio.uni-bonn.de/people/jan_kreft/one_step_nitrification.html

Kontakt:
Dr. Jan-Ulrich Kreft
Theoretische Biologie (http://www.theobio.uni-bonn.de)
Institut für Zelluläre und Molekulare Botanik der Universität Bonn
Tel.: 0228/73-2081, E-Mail: kreft@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.theobio.uni-bonn.de/people/jan_kreft/one_step_nitrification.html
http://www.theobio.uni-bonn.de

Weitere Berichte zu: Ammoniak Bakterium Biofilme Holophaga Mikrobe Nahrung Nitrat Stoffwechselweg Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Live-Verfolgung in der Zelle: Biologische Fussfessel für Proteine
19.06.2018 | Universität Basel

nachricht Tag it EASI - neue Methode zur genauen Proteinbestimmung
19.06.2018 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics