Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsteilung lässt Bakterien schneller wachsen

08.05.2006
Manche Bakterien nutzen ihre Nahrung so schlecht, dass von ihrem "Stoffwechselmüll" noch andere Mikroben leben können. Biologen der Universitäten Bonn und Barcelona haben nun einen möglichen Grund für diese Ineffizienz entdeckt. Demnach wachsen Bakterien unter Umständen schneller, wenn sie nicht das letzte Quäntchen Energie aus ihrer Nahrung pressen, sondern "kurze" Stoffwechselwege bevorzugen.

Es gibt daher viele Stoffwechselwege, die augenscheinlich immer in Arbeitsteilung durchgeführt werden. Die Wissenschaftler postulieren jedoch, dass es auch in diesen Fällen in der Natur "Komplett-Verwerter" geben müsse - und erklären, wie man sie finden kann. Die Studie ist jetzt in der Zeitschrift "Trends in Microbiology" erschienen.

Wenn der Kamin nicht richtig zieht, bleibt jede Menge Asche und angekohltes Holz zurück. Ähnlich ineffizient gehen manche Bakterien mit ihrem Brennstoff um - beispielsweise die so genannten "Nitrifizierer": Sie "verbrennen" Ammoniak zu Nitrit. Das enthält aber immerhin noch soviel Energie, dass es einer zweiten Nitrifizierer-Gruppe als Nahrung dient: Diese setzt es zum Endprodukt Nitrat um. Bislang wurde noch kein Mikroorganismus entdeckt, der Ammoniak direkt zu Nitrat umsetzt. Bekannt ist das schon seit 1890, eine gute Erklärung dafür steht jedoch noch aus.

Eine solche meint Dr. Jan Kreft zusammen mit Kollegen aus Barcelona nun gefunden zu haben. In einer kürzlich veröffentlichten Studie zeigt der Mitarbeiter der Theoretischen Biologie, dass kurze Stoffwechselwege einen evolutiven Vorteil darstellen können - und zwar aus zwei Gründen: "Zunächst einmal wird jeder Stoffwechselschritt in Organismen durch ein spezifisches Zelleiweiß katalysiert, ein Enzym", erläutert Kreft. "Die Zellmaschinerie kann aber nur eine bestimmte Enzymmenge pro Zeiteinheit synthetisieren. Für eine Reaktionskette von fünf Schritten muss das Bakterium fünf Enzyme herstellen, bei zehn Schritten entsprechend zehn. Dazu benötigt die Zelle natürlich länger: Sie produziert in derselben Zeit von jedem Enzym weniger Kopien." Folge: Der Durchsatz durch die Stoffwechselkette sinkt.

Dazu kommt das Problem mit den Zwischenprodukten - je mehr Glieder die Stoffwechselkette hat, desto mehr Schwund: Zwischenprodukte können mit anderen Substanzen in der Zelle reagieren oder sonstwie verloren gehen. Mitunter stören sie die geregelten Abläufe in der Zelle und wirken giftig. Kurz: "Zwischenprodukte verursachen Kosten", sagt Kreft. "Ein Bakterium wird daher versuchen, ihre Gesamt-Konzentration möglichst niedrig zu halten - je länger die Kette, desto niedriger die Konzentration der einzelnen Zwischenprodukte." Das bremst den Durchsatz zusätzlich aus. Krefts Fazit: "Ein zusätzlicher Schritt lohnt nur, wenn dabei viel zusätzliche Energie herausspringt. Die Umsetzung von Nitrit zu Nitrat bringt für den Aufwand einfach nicht genug ein." Nitrifizierer, die sich die Arbeit teilen, wachsen daher schneller als "Komplett-Verwerter" und setzen sich normalerweise durch - und das, obwohl sie so schlechte Futterverwerter sind.

Wenn Nahrung ein knappes Gut ist, können sich Bakterien diesen Luxus aber nicht leisten. Das ist beispielsweise in so genannten "Biofilmen" der Fall - "das sind Bakterienbeläge, wie sie zum Beispiel auf Steinen in Flüssen oder Kläranlagen vorkommen", erklärt der Biologe. Die Mikroben in derartigen Schichten sind relativ unbeweglich; zudem ist das Nahrungsangebot gerade in tieferen Bereichen begrenzt. Wenn nun ein Bakterium die Nahrung unvollständig nutzt, um dadurch schneller wachsen zu können, setzt es mehr Nahrung weniger effizient um, weshalb in seiner Umgebung die Nährstoffkonzentration stärker abnimmt: Seinen Nachbarn (die ja durch Teilung aus ihm hervorgegangen sind) und ihm selbst droht die Hungersnot.

Der "Stinkende Komplettverwerter" schont seine Ressourcen

"Spar-Bakterien", die durch längere Stoffwechselwege langsamer wachsen, dafür aber effizienter mit den Ressourcen umgehen, lassen für ihre Nachbarn dagegen mehr übrig. In Biofilmen sollten Komplettverwerter daher einen Selektionsvorteil haben, weil sie noch das letzte Quentchen Energie aus ihrer Nahrung herauskitzeln. "Um Bakterien zu finden, die den kompletten Weg vom Ammoniak zum Nitrat katalysieren, muss man wahrscheinlich in Biofilmen suchen", sagt Kreft.

Dass er und seine Kollegen Recht haben könnten, beweist eine Mikrobe namens "Holophaga foetida". Der "stinkende Komplettverwerter" (so die deutsche Bezeichnung) verwertet ringförmige (aromatische) Kohlenstoff-Verbindungen und nutzt dazu einen relativ langen Stoffwechselweg. Holophaga wächst langsam und kommt vor allem in Sedimenten vor, wo er wahrscheinlich in Biofilmen wächst. Er hat zwei Konkurrenten, die denselben Prozess arbeitsteilig in zwei Schritten durchführen. Diese vermehren sich schneller als Holophaga, sind aber dennoch seltener - eventuell wegen der schlechteren Futterverwertung.

Costa E, Perez J, Kreft JU (2006). Why is metabolic labour divided in nitrification? Trends in Microbiology 14: published online ahead of print

Weitere Infos unter: http://www.theobio.uni-bonn.de/people/jan_kreft/one_step_nitrification.html

Kontakt:
Dr. Jan-Ulrich Kreft
Theoretische Biologie (http://www.theobio.uni-bonn.de)
Institut für Zelluläre und Molekulare Botanik der Universität Bonn
Tel.: 0228/73-2081, E-Mail: kreft@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.theobio.uni-bonn.de/people/jan_kreft/one_step_nitrification.html
http://www.theobio.uni-bonn.de

Weitere Berichte zu: Ammoniak Bakterium Biofilme Holophaga Mikrobe Nahrung Nitrat Stoffwechselweg Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE