Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsteilung lässt Bakterien schneller wachsen

08.05.2006
Manche Bakterien nutzen ihre Nahrung so schlecht, dass von ihrem "Stoffwechselmüll" noch andere Mikroben leben können. Biologen der Universitäten Bonn und Barcelona haben nun einen möglichen Grund für diese Ineffizienz entdeckt. Demnach wachsen Bakterien unter Umständen schneller, wenn sie nicht das letzte Quäntchen Energie aus ihrer Nahrung pressen, sondern "kurze" Stoffwechselwege bevorzugen.

Es gibt daher viele Stoffwechselwege, die augenscheinlich immer in Arbeitsteilung durchgeführt werden. Die Wissenschaftler postulieren jedoch, dass es auch in diesen Fällen in der Natur "Komplett-Verwerter" geben müsse - und erklären, wie man sie finden kann. Die Studie ist jetzt in der Zeitschrift "Trends in Microbiology" erschienen.

Wenn der Kamin nicht richtig zieht, bleibt jede Menge Asche und angekohltes Holz zurück. Ähnlich ineffizient gehen manche Bakterien mit ihrem Brennstoff um - beispielsweise die so genannten "Nitrifizierer": Sie "verbrennen" Ammoniak zu Nitrit. Das enthält aber immerhin noch soviel Energie, dass es einer zweiten Nitrifizierer-Gruppe als Nahrung dient: Diese setzt es zum Endprodukt Nitrat um. Bislang wurde noch kein Mikroorganismus entdeckt, der Ammoniak direkt zu Nitrat umsetzt. Bekannt ist das schon seit 1890, eine gute Erklärung dafür steht jedoch noch aus.

Eine solche meint Dr. Jan Kreft zusammen mit Kollegen aus Barcelona nun gefunden zu haben. In einer kürzlich veröffentlichten Studie zeigt der Mitarbeiter der Theoretischen Biologie, dass kurze Stoffwechselwege einen evolutiven Vorteil darstellen können - und zwar aus zwei Gründen: "Zunächst einmal wird jeder Stoffwechselschritt in Organismen durch ein spezifisches Zelleiweiß katalysiert, ein Enzym", erläutert Kreft. "Die Zellmaschinerie kann aber nur eine bestimmte Enzymmenge pro Zeiteinheit synthetisieren. Für eine Reaktionskette von fünf Schritten muss das Bakterium fünf Enzyme herstellen, bei zehn Schritten entsprechend zehn. Dazu benötigt die Zelle natürlich länger: Sie produziert in derselben Zeit von jedem Enzym weniger Kopien." Folge: Der Durchsatz durch die Stoffwechselkette sinkt.

Dazu kommt das Problem mit den Zwischenprodukten - je mehr Glieder die Stoffwechselkette hat, desto mehr Schwund: Zwischenprodukte können mit anderen Substanzen in der Zelle reagieren oder sonstwie verloren gehen. Mitunter stören sie die geregelten Abläufe in der Zelle und wirken giftig. Kurz: "Zwischenprodukte verursachen Kosten", sagt Kreft. "Ein Bakterium wird daher versuchen, ihre Gesamt-Konzentration möglichst niedrig zu halten - je länger die Kette, desto niedriger die Konzentration der einzelnen Zwischenprodukte." Das bremst den Durchsatz zusätzlich aus. Krefts Fazit: "Ein zusätzlicher Schritt lohnt nur, wenn dabei viel zusätzliche Energie herausspringt. Die Umsetzung von Nitrit zu Nitrat bringt für den Aufwand einfach nicht genug ein." Nitrifizierer, die sich die Arbeit teilen, wachsen daher schneller als "Komplett-Verwerter" und setzen sich normalerweise durch - und das, obwohl sie so schlechte Futterverwerter sind.

Wenn Nahrung ein knappes Gut ist, können sich Bakterien diesen Luxus aber nicht leisten. Das ist beispielsweise in so genannten "Biofilmen" der Fall - "das sind Bakterienbeläge, wie sie zum Beispiel auf Steinen in Flüssen oder Kläranlagen vorkommen", erklärt der Biologe. Die Mikroben in derartigen Schichten sind relativ unbeweglich; zudem ist das Nahrungsangebot gerade in tieferen Bereichen begrenzt. Wenn nun ein Bakterium die Nahrung unvollständig nutzt, um dadurch schneller wachsen zu können, setzt es mehr Nahrung weniger effizient um, weshalb in seiner Umgebung die Nährstoffkonzentration stärker abnimmt: Seinen Nachbarn (die ja durch Teilung aus ihm hervorgegangen sind) und ihm selbst droht die Hungersnot.

Der "Stinkende Komplettverwerter" schont seine Ressourcen

"Spar-Bakterien", die durch längere Stoffwechselwege langsamer wachsen, dafür aber effizienter mit den Ressourcen umgehen, lassen für ihre Nachbarn dagegen mehr übrig. In Biofilmen sollten Komplettverwerter daher einen Selektionsvorteil haben, weil sie noch das letzte Quentchen Energie aus ihrer Nahrung herauskitzeln. "Um Bakterien zu finden, die den kompletten Weg vom Ammoniak zum Nitrat katalysieren, muss man wahrscheinlich in Biofilmen suchen", sagt Kreft.

Dass er und seine Kollegen Recht haben könnten, beweist eine Mikrobe namens "Holophaga foetida". Der "stinkende Komplettverwerter" (so die deutsche Bezeichnung) verwertet ringförmige (aromatische) Kohlenstoff-Verbindungen und nutzt dazu einen relativ langen Stoffwechselweg. Holophaga wächst langsam und kommt vor allem in Sedimenten vor, wo er wahrscheinlich in Biofilmen wächst. Er hat zwei Konkurrenten, die denselben Prozess arbeitsteilig in zwei Schritten durchführen. Diese vermehren sich schneller als Holophaga, sind aber dennoch seltener - eventuell wegen der schlechteren Futterverwertung.

Costa E, Perez J, Kreft JU (2006). Why is metabolic labour divided in nitrification? Trends in Microbiology 14: published online ahead of print

Weitere Infos unter: http://www.theobio.uni-bonn.de/people/jan_kreft/one_step_nitrification.html

Kontakt:
Dr. Jan-Ulrich Kreft
Theoretische Biologie (http://www.theobio.uni-bonn.de)
Institut für Zelluläre und Molekulare Botanik der Universität Bonn
Tel.: 0228/73-2081, E-Mail: kreft@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.theobio.uni-bonn.de/people/jan_kreft/one_step_nitrification.html
http://www.theobio.uni-bonn.de

Weitere Berichte zu: Ammoniak Bakterium Biofilme Holophaga Mikrobe Nahrung Nitrat Stoffwechselweg Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften