Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantitative Fluoreszenzmikroskopie per Knopfdruck

25.04.2006
Wissenschaftler aus Göttingen entwickeln neue Methoden zur quantitativen Analyse molekularer Prozesse.

Moleküle sind die Grundbausteine jeden Lebens. Um zu verstehen, wie die Prozesse des Lebens funktionieren - wie zum Beispiel Nervenzellen Informationen kodieren und weiterleiten - ist die Analyse der molekularen Grundlagen solcher Vorgänge unerlässlich. Seit etwa zwei Jahrzehnten nutzen Wissenschaftler so genannte "Imaging Technologien", um mit Hilfe von Fluoreszenzfarbstoffen im lebenden Gewebe molekulare Prozesse sichtbar zu machen und zu beobachten. Mit Farbstoffen, die Kalzium binden, lässt sich zum Beispiel beobachten, dass die Konzentration von Kalziumionen in einer Nervenzelle ansteigt, wenn sie einen Impuls sendet. Am besten werden solche Experimente heute in Gewebsschnitten durchgeführt. Hier waren aber bisher genaue quantitative Aussagen nicht möglich. Mit Hilfe computergestützter Methoden ist es Prof. Dr. Dr. Detlev Schild und seinem Mitarbeiter Tsai-Wen Chen nun gelungen, molekulare Prozesse im lebenden Gewebe genau zu quantifizieren. Die Arbeit wird in der Aprilausgabe der renommierten Zeitschrift "Biophysical Journal" publiziert. Professor Schild ist Direktor der Abteilung Neurophysiologie und zelluläre Biophysik am Bereich Humanmedizin der Universität Göttingen, Bereich Humanmedizin. Er forscht am DFG - Forschungszentrum "Molekularphysiologie des Gehirns (CMPB)" sowie am Bernstein Center for Computational Neuroscience. Tsai-Wen Chen ist PhD - Student des Göttinger internationalen Studiengangs Neuroscience und promoviert in Schilds Arbeitsgruppe.

Ein großes Problem bei der Ermittlung quantitativer Daten aus Fluoreszenzfärbungen bereitet die so genannte Hintergrundfärbung. Fluoreszenzfarbstoff, der unspezifisch am Gewebe bindet, oder Reflexionen in der Optik können dazu beitragen, dass auch dort ein Fluoreszenzsignal gemessen wird, wo die zu untersuchenden Moleküle gar nicht vorhanden sind. Zusätzlich wird die quantitative Bestimmung des Signals durch "Rauschen" gestört. Ursache für das "Rauschen" sind Unregelmäßigkeiten im Fluoreszenzsignal und im Verstärker. Gemeinhin versuchen Wissenschaftler das Hintergrundsignal abzuschätzen, indem sie die Fluoreszenz in einem Bereich des Gewebes messen, der aufgrund theoretischer Überlegungen kein spezifisches Signal haben dürfte. Diese Methode ist aber nicht nur mühsam, sie ist auch recht ungenau.

Prof. Schild und sein Mitarbeiter Chen suchten daher einen anderen Weg zur Hintergrundbestimmung, der nicht von Messungen in benachbarten Regionen abhängig ist. Sie nutzten diese Methode, um die Veränderung der Kalziumionenkonzentration in Nervenzellen genau zu bestimmen. Die Kalziumionenkonzentration, und damit das spezifische Signal, verändern sich mit der Aktivität der Zelle, das Hintergrundsignal hingegen nicht. "Diese Zeitinformation in den Fluoreszenzen haben wir genutzt, um dadurch den Hintergrund herauszurechnen", erläutert Schild.

Gemessen wird die Fluoreszenz an verschiedenen Punkten in einer "region of interest" (ROI), dem Bereich einer Zelle oder eines Gewebes, dessen Kalziumhaushalt der Forscher ermitteln möchte. Die genauen Werte sind an den verschiedenen Messpunkten in der ROI in der Regel unterschiedlich, weil das Mikroskop ein zweidimensionales Bild einer dreidimensionalen Struktur liefert. Diese Unterschiede werden von der neuen Methode ausgenutzt.

"Im Gegensatz zu den absoluten Werten ist aber die Dynamik, mit der sich das spezifische Signal an unterschiedlichen Messpunkten verändert, gleich. Die ROI muss aufgrund theoretischer Überlegungen so gewählt sein, dass diese Voraussetzung gegeben ist", erklärt Schilds Mitarbeiter Chen. So ließe sich dann anhand der zeitlichen Veränderung der Fluoreszenz an verschiedenen Messpunkten sowohl das Hintergrundsignal als auch das Rauschen herausrechnen.

"Die Methode wird eine breite Anwendung finden", ist Prof. Schild uberzeugt. "Um eine genaue Vorstellung davon zu gewinnen, wie eine Zelle Signale interpretiert oder mit welchen Mechanismen Zellen miteinander kommunizieren, ist die Quantifizierung molekularer Daten unerlässlich. Mit der Methode, die Chen und Schild entwickelt haben, lassen sich quantitative Daten nicht nur sehr genau, sondern auch sehr schnell bestimmen. Mikroskophersteller können unsere Methode nun so in ihre Software einbauen, dass der Hintergrund automatisch per Knopfdruck abgezogen wird", so Schild.

Quelle:
Tsai-Wen Chen, Bei-Jung Lin, Edgar Brunner und Detlev Schild (2006). In-situ background estimation in quantitative fluorescence imaging. Biophysics Journal 90(7):2534-47
Weitere Informationen:
Prof. Dr. Dr. Detlev Schild
Abt. Neurophysiologie und zelluläre Biophysik, Zentrum Physiologie und Pathophysiologie
Humboldtallee 23, 37073 Göttingen
Tel. +49 (0)551 / 39-5915 /-8331, Fax +49 (0)551 / 39-8399
dschild@gwdg.de
Gemeinsame Presseinformation vom Bernstein Center for Computational Neuroscience (BCCN) Göttingen und dem Bereich Humanmedizin der Universität Göttingen.

Das BCCN Göttingen ist ein Verbundprojekt der Georg-August-Universität Göttingen, des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, dem Deutschen Primaten Zentrum und der Otto Bock HealthCare GmbH.

Die Bernstein Centers for Computational Neuroscience (BCCN) sind vier vom BMBF geförderte Zentren in Berlin, Freiburg, Göttingen und München. In dem interdisziplinären Netzwerk werden Experiment, Datenanalyse und Computersimulation auf der Grundlage wohl definierter theoretischer Konzepte vereint. Zentrales Anliegen der Computational Neuroscience ist die Aufklärung der neuronalen Grundlagen von Hirnleistungen, die so z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik führen.

Dr. Tobias Niemann | idw
Weitere Informationen:
http://www.bernstein-zentren.de
http://www.bccn-goettingen.de/
http://ukmn.gwdg.de/

Weitere Berichte zu: BCCN Fluoreszenz Gewebe Hintergrundsignal Humanmedizin Messpunkte Nervenzelle ROI Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert

28.03.2017 | Materialwissenschaften

Mobile Goldfinger

28.03.2017 | Biowissenschaften Chemie

Schnelle Time-to-Market durch standardisierte Datacenter-Container

28.03.2017 | Informationstechnologie