Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei Mäusen scheinen bestimmte interzelluläre Röhren dafür zu sorgen, dass das Herz nicht aus dem Takt gerät

10.04.2006
Viele Zellen können mit ihren Nachbarn kommunizieren, indem sie über Röhren in ihrer Hülle Signalmoleküle austauschen. In der Regel geht das ziemlich flott. Im Herzen sorgen solche "schnellen" Röhren beispielsweise dafür, dass sich die Muskelzellen fast zeitgleich zusammenziehen.

Doch zumindest im Mäuseherzen gibt es auch Röhren, die elektrische Reize und Signalmoleküle nur sehr langsam durchlassen. Das zeigt eine Studie an der Universität Bonn, die am Institut für Genetik und in der Medizinischen Klinik und Poliklinik II entstanden ist. Die "langsamen" Röhren verhindern möglicherweise, dass die Kreislaufpumpe lebensbedrohlich aus dem Takt gerät. Die Studie ist jetzt in der Fachzeitschrift Proceedings of the National Academy of Sciences (USA) erschienen.

Die interzellulären Röhren bestehen aus Proteinen, den so genannten Connexinen. Sie durchdringen die Membran und bilden einen geschlossenen Halbkanal. Bei benachbarten Zellen können die Halbkanäle aneinander docken und sich zu einer interzellulären Röhre öffnen. Es gibt viele verschiedene Connexintypen. Nicht alle lassen dieselben Substanzen durch. Auch unterscheiden sie sich in der Geschwindigkeit, mit der Moleküle sie von einer Zelle zur anderen durchqueren können. Eine besonders "langsame" Connexin-Variante wurde vor fünf Jahren in der Maus entdeckt. Bei Menschen gibt es einen ähnlichen Connexintyp. Wofür der Körper dieses Connexin benötigt, war lange unklar. "Wir haben daher in Mäusen untersucht, wo diese ’langsamen’ Connexinröhren gebildet werden", erklärt die Bonner Doktorandin Maria Kreuzberg im Institut für Genetik. Fündig wurden die Forscher vor allem im Mäuseherzen.

Der Hohlmuskel besteht bei Mäusen wie bei Menschen aus zwei Vorhöfen und zwei Hauptkammern. Wenn die Vorhöfe sich zusammenziehen, pumpen sie das Blut in die Hauptkammern. Diese kontrahieren ein wenig später und befördern das Blut dabei in den Körper- und Lungenkreislauf. Prinzipiell funktioniert das ohne Anstoß von außen. Jedes Säugetier-Herz verfügt nämlich über eine eigene Schrittmacherregion, den Sinusknoten. Durch dessen Taktgebung entstehen elektrische Reize, die durch "schnelle" interzelluläre Röhren über die Vorhöfe geleitet werden und veranlassen, daß diese sich zusammenziehen. Anschließend laufen die Reize im AV Knoten zusammen, treten von dort in die Hauptkammern über und bewirken ebenfalls deren Kontraktion.

Die Reizweiterleitung im AV Knoten erfolgt jedoch verzögert, wie Dr. Jan Schrickel von der Medizinischen Klinik II gemessen hat. So ist gewährleistet, dass sich die Kammern erst nach den Vorhöfen zusammenziehen. "Mitverantwortlich für diese Verzögerung scheinen die ’langsamen’ Connexinröhren zu sein", erklärt Maria Kreuzberg. "Wir fanden sie vor allem im Sinus- und AV-Knoten des Reizleitungssystem im Mausherzen." Bei Nagern, die dieses Connexin aufgrund eines gentechnischen Eingriffs nicht bilden konnten, funktionierte das Herz unter normalen Bedingungen ohne Probleme. Anders jedoch, wenn die Wissenschaftler an der Medizinischen Klinik II in diesen Mäusen ein so genanntes Vorhofflimmern hervorriefen. Dabei ziehen sich die Vorhöfe in hoher Frequenz unkoordiniert zusammen; der Bluttransport zu den Hauptkammern ist dadurch stark eingeschränkt. Lebensbedrohlich ist dieser Zustand nicht - zumindest, solange die Kammern normal arbeiten.

Bei Mäusen hat ein Vorhofflimmern normalerweise kaum Auswirkungen auf die Schlagfrequenz der Hauptkammern - wahrscheinlich, weil die "langsamen" Connexinröhren beide Kammer-Systeme weitgehend voneinander entkoppeln. "Bei den Tieren ohne ’langsame’ Connexinröhren ließ das Vorhofflimmern jedoch auch die Kammerfrequenz ansteigen", sagt Maria Kreuzberg. Die Koordination des Herzschlages scheint bei den gentechnisch veränderten Nagern nicht richtig zu klappen; Schlagfrequenz-Störungen könnten sich bei ihnen leichter von den Vorhöfen zu Hauptkammern ausbreiten. "Das kann unter Umständen gefährliche Konsequenzen haben", sagt Kreuzberg. "So könnten die Hauptkammern durch eine schnellere Überleitung lebensbedrohliche Arrhythmien entwickeln. In Zukunft wollen wir herausfinden, ob ’langsame’ Connexinröhren im Menschherzen eine ähnliche Bedeutung wie im Mausherzen haben."

Es gibt auch Menschen, bei denen die Schutzfunktion des AV-Knotens durch eine Art "Kurzschluss" umgangen wird. Eine solche zusätzliche Leitungsbahn besteht beim "Wolff-Parkinson-White-Syndrom". Hauptsymptom ist ein plötzlich auftretendes extremes Herzrasen, das zu so genanntem Kammerflimmern führen kann. Im Gegensatz zum Vorhofflimmern beim gesunden AV-Knoten ist dieser Zustand lebensgefährlich, da der Blutfluss gänzlich zum Erliegen kommen kann.

Kontakt:
Institut für Genetik:
Maria Kreuzberg
Telefon: 0228/73-6841
E-Mail: maria.kreuzberg@uni-bonn.de
oder Professor Dr. Klaus Willecke
Telefon: 0228/73-4210
E-Mail: genetik@uni-bonn.de
Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn:
Dr. Jan Schrickel
Dr. Thorsten Lewalter
Telefon: 0228/228-6670
E-mail: jan.schrickel@ukb.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Connexinröhren Hauptkammern Mäuse Röhren Vorhofflimmern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie