Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Mehr Licht!" ins Dunkel der frühen Zellevolution

30.03.2006
Als Goethe starb, soll er gesagt haben: "Mehr Licht!". Ob als Bitte oder Beobachtung, bleibt ungeklärt. Heutige Evolutionsforscher sind auf der intensiven Suche nach "Mehr Licht!", wenn es darum geht, die graue Vergangenheit der Urzellen zu beleuchten.

Als besonders schwierig gilt die Suche nach einer zutreffenden Beschreibung des evolutionären Übergangs von den Prokaryoten (den bakterienartigen Zellen) zu den Eukaryoten - den höherentwickelten Zellen, die stets einen Zellkern besitzen und zugleich die einzelligen Ur-Ur-Urahnen des Menschen sind. Neuigkeiten zum Thema berichtet jetzt der Evolutionsbiologe Prof. Dr. William Martin (Institut für Botanik III der Heinrich-Heine-Universität Düsseldorf) gleich zweimal in der international angesehenen Fachzeitschrift "Nature" (2. März, S. 41- 45 und in der Ausgabe vom 30. März).

Im ersten Beitrag beschreibt er zusammen mit Eugene Koonin vom amerikanischen National Institute of Health, wie eine Besonderheit der Genorganisation der Eukaryoten, die sog. Introns, den mechanistischen Antrieb zur Entstehung des Zellkerns geführt haben kann.

Introns in eukaryotischen Genen kennt man seit rund 30 Jahren. Sie unterbrechen die Genstruktur und mŸssen auf dem Wege der Realisierung (Expression) der genetischen Information mühsam entfernt (herausgespleisst) werden.

Die Vorstellung, dass Introns für die komplexe Zellkompartimentierung der Eukaryoten ursächlich waren, ist grundlegend neu, und läuft einem seit Jahrzehnten etablierten Dogma der Zellevolution scharf entgegen. Bisher herrschte eine nahezu unangefochtene Vorstellung in der Fachwelt, dass zuerst der Kern entstand, dann die Mitochondrien (die energieliefernden Kraftwerke eukaryotischer Zellen).

Martins Theorie zufolge ist genau das Gegenteil der Fall: Zuerst die Mitochondrien, aus deren Genen die molekularen Vorfahren der Introns stammen, dann der Kern. Stellt dies die traditionelle Sicht der Zellevolution auf den Kopf? Martin sagt: "Ja." Um die Entstehung just jener Mitochondrien geht es in seinem zweiten Beitrag, der gemeinsam mit T. Martin Embley von der Universität Newcastle (UK) verfasst wurde. Die Mitochondrien sind vor mehr als einer Milliarde Jahre aus einer Symbiose hervorgegangen: Ein freilebendes Bakterium ist in eine Wirtszelle eingewandert. Aber was genau war diese Wirtszelle?

Der bisherigen Lehrmeinung zufolge war sie ein primitiver Eukaryot. Wenn das so wäre, dann müsste es heute Zellen geben, die einen Kern aber keine Mitochondrien besitzen. Dies haben Biologen zwar lange geglaubt, aber zu unrecht, wie im neuen Beitrag erklärt wird. Bei den Zellen, wo man bislang das völlige Fehlen der Mitochondrien vermutet hat, sind jedoch welche vorhanden!

Aber im Gegensatz zu den Mitochondrien des Menschen sind sie nicht an der Atmung beteiligt, sondern sie bilden Wasserstoff (die Hydrogenosomen) oder essentielle Eisen-Schwefel Cofaktoren (die Mitosomen). Die evolutionäre Signifikanz dieser besonderen Formen der Mitochondrien, die bei den anaeroben (Sauerstoff-meidenden) Eukaryoten vorkommmen, wurde lange von der Fachwelt bezweifelt. Martin ist der Ansicht, dass genau im anaeroben Stoffwechsel der Hydrogenosomen (und Mitosomen) der Schlüssel zur Entstehung der Eukaryoten und damit zur Entstehung der höheren Lebensformen liegt.

Die neuen Arbeiten zeichnen ein ganz anderes Bild der frühen Zellevolution, als heute in den meisten Lehrbüchern zu finden ist.

Sie messen dem Prinzip der Symbiose eine sehr viel wichtigere Rolle in der Entstehung der Eukaryoten zu, als man bisher angenommen hat. Da die menschliche Entwicklungslinie letztendlich auch bei der Entstehung der Eukaryoten anfängt, ist die Suche nach "Mehr Licht!" in der Zellevolution auch ein Versuch, unsere eigenen Wurzeln im Stammbaum des Lebens besser auszuleuchten. Dazu Martin: "Im Prinzip ja, solange man nicht darauf beharrt, alle Prozesse in der Evolution als Baum zu verstehen, weil man es bei der Symbiose nicht mit einer Verästelung, sondern mit einer Wiedervereinigung zu tun hat."

Prof. Martin’ Arbeiten werden von der DFG im Rahmen des bundesweit ersten Transregio-Sonderforschungsbereichs "Endosymbiose: Vom Prokaryoten zum eukaryotischen Organell" gefördert.

Kontakt: Prof. Dr. William Martin , e-mail : w.martin@uni-duesseldorf.de , web: http://www.molevol.de

Rolf Willhardt | idw
Weitere Informationen:
http://www.uni-duesseldorf.de/
http://www.molevol.de

Weitere Berichte zu: Eukaryot Introns Mitochondrium Symbiose Zellevolution

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Kobold in der Zange

17.01.2018 | Biowissenschaften Chemie

Mit Elektrizität Magnetismus umschalten

17.01.2018 | Physik Astronomie

Maßgeschneiderte Eigenschaften erlauben Einblicke in Quantenpunkte

17.01.2018 | Physik Astronomie