Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen aus dem Chip

28.03.2006
Wissenschaftlern vom ISAS - Institute for Analytical Sciences ist es gelungen, mit Hilfe eines Mikrochips künstliche Zellen nach dem Vorbild der Natur herzustellen.

Anders als die meisten anderen Herstellungsmethoden bietet diese nicht nur die Möglichkeit zur Massenproduktion, sondern erleichtert auch noch die weitere Bearbeitung der Zellen. Noch ohne Anwendung, aber dennoch überraschend: die Methode kann neben der für Zellen üblichen Bläschen-Form auch schlauchartige Gebilde erzeugen, die außergewöhnlich lang sind.


Falschfarben-Darstellung der kuriosen Schläuche in 1000-facher Vergrößerung
Petra Dittrich/ISAS

Die Herstellung künstlicher Zellen beschäftigt die Bio- und Nanotechnologie schon seit einigen Jahren. Wissenschaft und Industrie setzen große Erwartungen in sie: Künstliche Zellen könnten als Bioreaktoren den klimaneutralen Energieträger Wasserstoff in Massen produzieren oder als eine Art Taxi medizinische Wirkstoffe gezielt zu kranken Zellen bringen.

Doch um in einer Zelle etwas produzieren oder transportieren zu können, braucht sie erst mal eine geeignete Hülle, die Zellmembran. Sie muss flexibel und doch stabil sein, wie eine Haut das Innere schützen, aber gleichzeitig durchlässig sein für Nähr- oder Wirkstoffe und Wasser. Diese Aufgabe hat die Natur mit einer Doppelschicht aus hauptsächlich Fettsäuren, sogenannten Lipiden gelöst. Die künstliche Erzeugung von Zellmembranen auf Lipid-Basis ist jedoch schwierig, für die Massenproduktion waren bisherige Ansätze eher ungeeignet. Einen neuen und kostengünstigen Weg haben Wissenschaftler des ISAS - Institute for Analytical Sciences entdeckt. Wie sie in der englischen Zeitschrift "Lab on a Chip" berichten, können sie mit Hilfe eines Mikrochips Zellmembranen in beliebig großer Zahl herstellen.

Der Chip besteht aus drei übereinander liegenden Ebenen, in der oberen und unteren Ebene haben die Forscher winzige Kanäle, in der mittleren ebenso winzige Löcher angebracht. Gefüllt mit Wasser und Lipiden, funktioniert das ganze im Prinzip wie eine Seifenblasen-Maschine, nur statt Seifenblasen produziert der Chip eben Zellen. Außer der Möglichkeit zur Massenproduktion bietet die Methode noch weitere Vorteile, so lässt sich beispielsweise die gewünschte Größe der Zellen vorher genau definieren. "Da wir im Moment nur mit einem einzigen Chip arbeiten, haben alle von uns hergestellten Zellmembranen die gleiche Größe von etwa drei Mikrometer", erklärt Petra Dittrich vom ISAS. "Variiert man jedoch den Durchmesser von Kanälen und Löchern, sind vermutlich Größen von 300 Nanometer bis zu 30 Mikrometer machbar". Und noch ein Plus für die Herstellung per Mikrochip: die weitere Bearbeitung ist einfach. Soll etwa ein Wirkstoff in die Zellmembranen eingebracht oder deren Inhalt analysiert werden, können die dafür notwendigen Apparaturen direkt in den Chip integriert werden. So wird das bei anderen Methoden unvermeidliche Pipettieren überflüssig.

Die Mikrochip-Methode kann jedoch noch etwas: Bei geringeren Druckunterschieden zwischen der oberen und unteren Ebene entstehen keine Bläschen, sondern Schläuche. Das Erstaunliche daran: die Zell-Schläuche haben bei einem Durchmesser von drei Mikrometer eine Länge von bis zu anderthalb Zentimetern. Das ist ungefähr so, als könnte ein 30 Zentimeter dickes und anderthalb Kilometer langes Rohr in einem Stück hergestellt werden. Zudem drehen sich die Schläuche manchmal auf wie Kordeln; warum sie das tun, können die Wissenschaftler im Moment noch nicht erklären. "Wir wissen nicht, ob die Schläuche überhaupt für irgendetwas zu gebrauchen sind", erläutert Dittrich. "Aber wer weiß, vielleicht können sie eines Tages Injektionsnadeln ersetzen, dann müsste es beim Arzt nicht mehr so pieksen..."

Uta Deinet | idw
Weitere Informationen:
http://www.rsc.org/Publishing/Journals/LC/article.asp?doi=b517670k
http://www.ansci.de

Weitere Berichte zu: Massenproduktion Mikrochip Schläuche Wirkstoff Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie