Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gut für die Maus: Ein neues Modell zur Untersuchung der Gefäßbildung

29.10.2001


Das sog. Tissue Engineering (Bio-Ingenieurwissenschaft) beinhaltet die Isolierung und Kultivierung körpereigener Zellen in einem geeigneten Trägermaterial außerhalb des Körpers vor ihrer Transplantation zurück in den lebenden Organismus. Das Überleben dieser Zellen ist abhängig davon, das ausreichend Blut-Gefäße in das Konstrukt aus Zellen und Trägermaterial einwachsen, die die Blut-Versorgung des Gewebes sichern. Um diese Entwicklung in einem lebenden Organismus verfolgen zu können, hat die Abteilung für Plastische und Handchirurgie des Universitätsklinikums Freiburg unter der Leitung von Universitätsprofessor Dr. Björn Stark, eine völlig neue "Versuchsanordnung" entwickelt. Die Rolle des lebenden Organismus hat ein speziell präpariertes und bebrütetes Hühnerei übernommen. Dr. Jörg Borges wurde mit seinen Ko-Autoren (F.T. Tegtmeier, N. Torio Padron, M.C. Mueller und G.B. Stark) für die Entwicklung dieses Modells und seinen Vortrag vor der Vereinigung der Deutschen Plastischen Chirurgen in Frankfurt am Main mit dem Forumspreis, dem renommiertesten Wissenschaftspreis auf diesem Fachgebiet, ausgezeichnet.

Das Ei-Modell hat den Vorteil, dass die Gefäßneubildung und seine Auswirkung auf kultivierte Zellen während eines Zeitraumes von 10 Tagen zu jeder Zeit beobachtet werden können. Das geht beispielsweise bei einem Versuch mit häufig eingesetzten sog. Nacktmäusen nicht. Auch hier könnte man das Zell-/Trägermaterial Konstrukt einspritzen, aber die Entwicklung der sog. Vaskularisierung kann nicht kontinuierlich verfolgt werden. Also gut für die Maus, - das Ei kann für viele Fragestellungen des Tissue Engineering aber auch andere Forschungsbereiche wie beispielsweise Materialwissenschaften, Pharmazie oder Tumorbiologie Tierversuche kostengünstig ersetzen.

Im Rahmen der Versuchsanordnung wird dazu wird vorsichtig ein Loch in die Eischale gesägt. Durch dieses Loch wird ein genau passender Plexiglaszylinder eingeführt, bis er auf eine stark von Gefäßen durchzogene Membran mit dem schönen Namen ’Chorioallantoismembran’ trifft. Hier wird jetzt das Zell-/Trägermaterial-Konstrukt aufgebracht und mit einem durchsichtigen Deckel verschlossen. Über einen Zeitraum von 10 Tagen kann nun die Bildung der Blutgefäße sowie die Entwicklung der zu züchtenden Zellen untersucht werden.

Kontakt:
Dr. med. Jörg Borges


Universitätsklinikum Freiburg
Abt. Plastische und Handchirurgie
Hugstetter Str. 55

Tel.: 0761 / 270-2401
Fax: 0761 / 270-2501
E-Mail: borges@ch11.ukl.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.ukl.uni-freiburg.de/chi/plastische/vortrag/cam.ppt

Weitere Berichte zu: Engineering Konstrukt Organismus Plastische

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie