Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Langsam, alt und außergewöhnlich: methanfressende Einzeller tief im Meeresboden

22.02.2006


Urtümliche Einzeller tief im Meeresboden werden möglicherweise bis zu 2.000 Jahre alt. Geringe Nährstoffkonzentrationen, extrem niedriger Stoffwechsel und ungewöhnliche Stoffwechselwege machen es möglich. Ein deutsch-amerikanisches Team von Geochemikern und Mikrobiologen kam im Rahmen des Ozean Bohr Programms (ODP) jetzt mit Hilfe neuer Analysemethoden bislang nicht erforschten Archaeen auf die Spur und gewann Erkenntnisse über ihre Lebensweise und Rolle in der tiefen Biosphäre. Das Team unter Leitung des Geochemikers Prof. Kai-Uwe Hinrichs vom DFG-Forschungszentrum Ozeanränder (RCOM) in Bremen veröffentlichte seine Ergebnisse in der angesehenen Zeitschrift der Nationalen Akademie der Wissenschaften der USA (Proceedings of the National Academy of Sciences, U.S.A.).



"Erst seit relativ kurzer Zeit ist bekannt, dass tief unter dem Meeresboden im Sediment ein uns völlig unbekanntes Ökosystem existiert - die so genannte tiefe Biosphäre. Die dort lebenden Bakterien und Archaeen machen etwa ein Zehntel der lebenden Biomasse auf der Erde aus. "Archaeen sind einzellige Lebewesen, die mit Bakterien etwa so eng verwandt sind, wie Bakterien mit uns. Sie bilden die dritte große Domäne des Lebens, neben Bakterien und Eukaryonten - zu letzteren zählen Pflanzen und Tiere", erläutert Doktorand Julius Lipp vom RCOM. Er teilt sich die Erstautorenschaft der Studie mit Jennifer F. Biddle, Doktorandin an der Pennsylvania State University. "Wir kannten Archaeen bisher hauptsächlich von lebensfeindlichen Orten: heiße Quellen in der Tiefsee und an Land, extrem salzige Lösungen, Erdöllagerstätten und eben unter enormem Druck unter fast nährstofflosen Bedingungen tief im Meeresboden", so Studienleiter Hinrichs. "Die Organismen dort unten scheinen wichtige, uns vertraute Prozesse auf völlig andere Art und Weise auszuführen, wie zum Beispiel den Umsatz von Methan."



Gerade dieser Prozess ist höchst interessant: Tief im Meeresboden produzieren Archaeen riesige Mengen Methan. Einen großen Teil bauen andere Archaeen wieder zu Kohlendioxid ab. Da Kohlendioxid als Treibhausgas 25-mal weniger wirksamer ist, als Methan, dämpft dies ihren Einfluss auf das Klima. Die Wissenschaftler untersuchten gezielt Schichten, in denen die Archaeen unter sauerstofffreien Bedingungen Methan zu Kohlendioxid zersetzen.

"Bisher kannten wir solche anaeroben Methanoxidierer nur aus Gebieten, wo relativ viel Methan vorkommt. Doch die Methankonzentrationen in den teilweise 90 Meter tiefen Sedimentschichten sind vergleichsweise gering", so Hinrichs. "Genetische Vergleiche zeigten, dass es sich um neue Arten von Methanoxidierern handelt. Außerdem ist der Stoffumsatz des Ökosystems so niedrig, dass sich die Zellen theoretisch nur alle 100 bis 2.000 Jahre teilen."

Was die Wissenschaftler fanden, hat sie fasziniert. "Unsere Untersuchungen vor der peruanischen Küste deuten darauf hin, dass zwar ein Großteil der Energie für das Ökosystem aus dem Abbau von Methan zu Kohlendioxid stammt. Aber der Kohlenstoff, den die Archaeen in ihre körpereigenen Verbindungen einbauen, stammt aus fossilem, organischen Material und nicht aus Methan", erläutert Hinrichs. "Das ist anders, als in bisher bekannten Systemen."

Herausgefunden haben sie all dies mit einer neuen Kombination von Methoden, die Hinrichs zusammen mit seinem Kollegen von der Pennsylvania State University Prof. House und anderen ausgeklügelt hat. Über die Analyse der Kohlenstoffisotope 12C und 13C in den Zellen der Archaeen konnten sie feststellen, welche Substanz die Organismen eingebaut haben. Dazu kam ein spezieller genetischer Fingerabdruck, den die Gruppe von Prof. Andreas Teske von der University of North Carolina, Chapel Hill, zum ersten Mal von diesem Lebensraum erhielt, sowie die Analyse artspezifischer, fettartiger Verbindungen. Zusammen zeigten diese Techniken den Wissenschaftlern welche und wie viele Mikroorganismen nicht nur vorhanden, sondern auch lebendig waren. "Analysiert man einfach alles vorhandene genetische Material, weiß man nicht, wann diese Organismen gelebt haben. In einem Ökosystem, das so langsam Stoffe abbaut, kann es sich leicht um längst abgestorbenes, altes Material handeln."

Dieser Lebensraum im tiefen Ozeanboden ist uns heute noch weitgehend fremd: "Wir wissen weniger über ihn, als über manchen Himmelskörper. Neben der DFG und anderen Porgrammen, förderte die NASA Teile der Forschung - nicht zuletzt weil unsere Techniken auch für die Suche nach Leben auf anderen Planeten geeignet sind", sagt Hinrichs.

Obwohl diese Vorgänge tief unter dem Meeresboden ablaufen, haben sie Einfluss auf unsere Umwelt. "Auch wenn die Prozesse extrem langsam sind: Da sie an allen Kontinentalhängen über riesige Flächen stattfinden, setzen die Archaeen riesige Mengen Methan zu Kohlendioxid um. So haben sie einen großen Einfluss auf den Treibhauseffekt", betont Hinrichs.

Weitere Informationen
Prof. Kai-Uwe Hinrichs
Organische Geochemie
DFG Forschungszentrum Ozeanränder
Tel : 0421 - 218-65700/1
mail: khinrichs@uni-bremen.de

Kirsten Achenbach
Öffentlichkeitsarbeit
DFG Forschungszentrum Ozeanränder
Tel. 0421 - 218-65541
mail: achenbach@marum.de

Kirsten Achenbach | idw
Weitere Informationen:
http://www.rcom-bremen.de

Weitere Berichte zu: Archaeen Bakterium Kohlendioxid Meeresboden Methan Ökosystem

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie