Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn sich Zellen breit machen

16.02.2006


Wie haften Zellen an Oberflächen fest und wie bewegen sie sich? - Der Physiker Dr. Ulrich Schwarz vom Zentrum für Modellierung und Simulation in den Biowissenschaften (BIOMS) forscht an der Ruprecht-Karls-Universität Heidelberg im Grenzbereich von Physik und Biologie



"In biologischen Systemen finden viele Prozesse statt, die etwas mit Mechanik zu tun haben", betont Dr. Ulrich Schwarz vom Interdisziplinären Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg. Als Nachwuchsgruppenleiter des Zentrums für Modellierung und Simulation in den Biowissenschaften (BIOMS) erforscht er vor allem, wie Zellen sich an Oberflächen festheften.



Deshalb umfasst seine Forschung mehrere Wissenschaftsgebiete. Die theoretische Physik stellt die Methoden bereit, um die Zelladhäsion quantitativ zu beschreiben. Die Physik der weichen Materie erklärt, wie die dabei wirkenden Kräfte aus den speziellen Eigenschaften biologischer Materie folgen. Und die Biologie von Zelladhäsion und Zellmechanik ist notwendig, um überhaupt zu verstehen, wie es Zellen gelingt, an Oberflächen anzuhaften oder wie sie auf einwirkende Kräfte wie Zug oder Druck reagieren.

"Unterschiedliche Kräfte wirken auf Körperzellen eigentlich ständig ein", erklärt Ulrich Schwarz. Denkt man an die Zellen im Blut oder in der Lunge, wird dies auch sofort deutlich. Und wer einmal für längere Zeit einen Gipsverband trug, weiß auch, wie schnell die Muskulatur unter dem Gips nachlässt. "Da fehlt der mechanische Input", erläutert der Physiker Schwarz.

In den letzten Jahren wurde in verschiedenen experimentellen Studien gezeigt, dass es für Zellen ein gewaltiger Unterschied ist, ob sie auf einer harten oder einen weichen Oberfläche anhaften. Harte Oberflächen sind eigentlich untypisch, denn in einem Organismus herrschen weiche Oberflächen innerhalb des Gewebes vor. Haben Zellen die Auswahl, bevorzugen sie aber die harten Oberflächen. Zu diesen stellen sie relativ schnell einen Kontakt her, der zudem noch stärker ist als auf weichen Substraten. Auch die Form der Zellen ist anders. Während auf einem weichen Untergrund die Zelle in der Aufsicht eher rundlich erscheint, ist sie auf einer harten Oberfläche eher eckig und nimmt eine größere Fläche ein.

Sollten sich derartige Erkenntnisse in Zukunft durchsetzen, könnte sich auch die Art und Weise, wie Zellen unter dem Mikroskop studiert werden, grundsätzlich ändern, da dazu im Moment meistens noch harte Glas- oder Plastikunterlagen verwendet werden. Auch für biomedizinische Anwendungen wie Implantate im menschlichen Körper könnten diese Beobachtungen zukünftig eine große Rolle spielen. Denn vielleicht wäre es in manchen Fällen günstiger, weichere Implantate zu nehmen als bisher.

Ulrich Schwarz haben es aber auch die weißen Blutkörperchen und deren Fortbewegung angetan. Bereits während seiner Tätigkeit als Nachwuchsgruppenleiter am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam konnte er erstaunliches über diesen für das Immunsystem so wichtigen Zelltyp herausfinden. Die weißen Blutkörperchen schwimmen zunächst einmal im Blutstrom mit. Treffen sie in der Nähe eines Infektionsherdes auf die Gefäßwand, dann gehen sie mit dieser schwache Bindungen ein. Diese schwachen Bindungen in Kombination mit dem Blutfluss ermöglichen es ihnen, entlang der Wand weiter zu rollen. Am Infektionsherd selbst bleiben sie dann stehen und kriechen aus der Blutbahn zum Ort der Entzündung. In Zusammenarbeit mit Immunologen konnte Ulrich Schwarz zeigen, dass die ersten Schritte der rollenden Adhäsion durch die Bildung von Mehrfachbindungen charakterisiert sind. Jetzt soll in einem Nachfolgeprojekt festgestellt werden, wie die rollende Adhäsion später zum Stillstand gebracht wird.

Besonders die verschiedenen Möglichkeiten, die sich für seine Forschungen in Heidelberg bieten, haben Ulrich Schwarz vor einem Jahr zu dem Wechsel von Potsdam an die Ruperto Carola bewogen. Die BIOMS-Initiative bot hier ausgezeichnete Möglichkeiten mit ihren Partnern Deutsches Krebsforschungszentrum, EML Research (Forschungsinstitut der Klaus Tschira Stiftung), European Molecular Biology Laboratory, Max-Planck-Institut für Medizinische Forschung und Universität Heidelberg (mit dem Interdisziplinären Zentrum für Wissenschaftliches Rechnen und dem Zentrum für Molekulare Biologie). Mit 2,5 Millionen Euro für fünf Jahre finanziert die Klaus Tschira Stiftung ein Drittel vom BIOMS, ein weiteres Drittel steuert das Land Baden-Württemberg bei. Die restlichen Mittel erbringen die Universität und beteiligte Forschungsinstitute. Ulrich Schwarz leitet eine der drei Nachwuchsgruppen (junior research groups), die durch BIOMS neu eingerichtet wurden.

"In Heidelberg gibt es viele Wissenschaftler mit interessanten Themen, die aber die mechanischen Aspekte bei ihre Forschung noch nicht berücksichtigt haben", findet der Physiker. So arbeitet er beispielsweise mit Dr. Friedrich Frischknecht vom Universitätsklinikum Heidelberg zusammen. Frischknecht ist im Bereich der Malaria-Forschung tätig und konnte den Infektionsweg des eindringenden Parasiten per Videomikroskopie verfolgen. Dabei zeigte sich, dass nach dem Stich einer Mücke der Malaria-Erreger zunächst sehr mobil ist und rasch aus den Hautschichten in Blutgefäße oder Lymphbahnen eindringt. Ließe sich die Mobilität des Erregers einschränken, könnte dies eine Möglichkeit darstellen, eine Malaria-Erkrankung zu verhindern. Auch bei einem derartigen Problem kann die biologische Physik wichtige Erkenntnisse liefern, findet Ulrich Schwarz. Denn natürlich muss der Erreger bei seiner Fortbewegung Kontakte zum umgebenden Gewebe herstellen, und es werden selbstverständlich auch Kräfte ausgeübt.

Darüber hinaus fasziniert Ulrich Schwarz auch das Konzept des Bioquant-Gebäudes, in dem zukünftig Wissenschaftler verschiedenster Forschungsrichtungen an biologischen Themen arbeiten werden. Ulrich Schwarz wird als einer der ersten dort im Sommer 2006 einziehen, denn sein derzeitiger Arbeitsplatz ist eher provisorisch, obwohl er kaum mehr als Papier und Bleistift sowie einen Computer benötigt, um die Bewegungen der Zellen sowie die auf sie einwirkenden Kräfte zu berechnen und mit spezieller Software zu simulieren. Allerdings ist die Zusammenarbeit mit experimentellen Forschern ein ganz wesentlicher Bestandteil seiner Arbeit, und genau das erhofft er sich von der zukünftigen Arbeit im Bioquant-Gebäude.
Stefan Zeeh

Rückfragen bitte an:
Dr. Ulrich Schwarz
Universität Heidelberg
Im Neuenheimer Feld 293, 69120 Heidelberg
Tel. 06221 544986, Fax 548652
Ulrich.Schwarz@iwr.uni-heidelberg.de

Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: BIOMS Bioquant-Gebäude Materie Max-Planck-Institut Physik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics