Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Nano gegen Krebs

10.02.2006


Sie sind nur einige Nanometer groß, doch ihre Wirkung ist enorm: Die winzigen Partikel treiben Krebszellen innerhalb kurzer Zeit in den Tod. Auf der nano tech 2006 in Tokio präsentieren Fraunhofer-Forscher vom 21. bis 23. Februar in Halle 4 den Beweis für die Wirksamkeit nanoskopischer Wirkstoffträger.


Nanocytes® bestehen aus einem Silikatkern und einer äußeren Proteinschicht. © Fraunhofer IGB



Medikamente, die sich selbstständig ihren Weg durch den Körper bahnen und am Ziel angekommen genau die kranken Zellen angreifen - das ist seit jeher der Traum der Mediziner und Pharmazeuten. Die Fraunhofer-Forscher vom Themenverbund Nanotechnologie sind diesem Ziel ein Stück näher gekommen: Ihre biofunktionellen Nanopartikel treiben Krebszellen in den Tod. "Diese zellähnlichen Gebilde haben einen festen Kern, der umgeben ist von Proteinen, die Krebszellen aufspüren und vernichten", erklärt Dr. Günter Tovar vom Fraunhofer-Institut für Grenzflächen und Bioverfahrenstechnik IGB.



Wie das funktioniert? "Die Kommunikation im menschlichen Körper ist ein biochemischer Prozess: Sie basiert auf dem Austausch von Molekülen", so Tovar. "Wir versuchen diese Kommunikation zu verstehen und für unsere Zwecke zu nutzen." Der Tumor-Nekrose-Faktor, TNF, beispielsweise setzt ein Molekül frei, das an den Rezeptoren der Krebszelle andockt und seine tödliche Botschaft überträgt. Um den Botenstoff TNF in den Körper einzuschleusen, haben Tovar und seine Kollegen von der Universität Stuttgart biofunktionelle Nanopartikel entwickelt. Diese Nanocytes® tragen an der Oberfläche TNF-Proteine. "Bei der Herstellung dieser Partikel profitieren wir von der Fähigkeit der "Bausteine" zur Selbstorganisation: Ist der Kontakt zwischen Partikeln und Proteinen einmal hergestellt, überwachsen die Proteine die Kerne ohne weiteres Zutun", erklärt Tovar.

Die fertigen Nanopartikel hat der Forscher in der Petrischale getestet. Das Ergebnis ist ermutigend: Krebszellen, die mit den Partikeln in Berührung kamen, starben ab. Diesen Vorgang haben die Forscher auf Video aufgezeichnet. Der Film wird bei der nano tech 2006 auf dem Gemeinschaftsstand der Fraunhofer-Gesellschaft gezeigt.

Bis die Nanocytes® im Kampf gegen Krebs eingesetzt werden können, wird noch einige Zeit vergehen - die klinischen Studien sind aufwändig und langwierig. Derweil könnten sich die biofunktionellen Nanopartikel aber schon in der Praxis bewähren: beispielsweise als Werkzeug für die Zellforschung oder als Bestandteil von Reagenzien für die medizinische Analytik.

Marion Horn | idw
Weitere Informationen:
http://www.fraunhofer.de/fhg/press/pi/2006/02/Presseinformation10-022006.jsp

Weitere Berichte zu: Krebszelle Nanopartikel Partikel Protein Tovar

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie