Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode erlaubt Einblicke in Proteinfunktion

14.03.2001


Das Verfahren der

FTIR-Differenzspektroskopie


Einem Photorezeptor bei der Arbeit zugeschaut RUB-Forscher in März-Ausgabe von "Nature structural biology"

Proteine bei der Arbeit zu beobachten ermöglicht ein neuer interdisziplinärer Ansatz, den Prof. Dr. Klaus Gerwert (Biophysik) und seine Mitarbeiter in den letzten Jahren an der RUB entwickelt haben: Sie nutzen statt der Röntgenstrukturanalyse die FTIR-Differenzspektroskopie und können so in Proteinen ablaufende Prozesse in Echtzeit von Nano (10-9) bis in den Sekundenbereich mit atomarer Auflösung beobachten. Die Anwendung ihrer Methoden am Photorezeptorprotein Photo Active Yellow proteine (PYP) beschreibt ein Artikel in der März-Ausgabe von NATURE Structural Biology. Ein "News and Views"-Kommentar dazu im gleichen Heft hebt die Innovation dieses Ansatzes für poststrukturelle Untersuchungen hervor.

Proteine als Nanomaschinen

Proteine sind vielseitige Nanomaschinen, die auf kleinstem Raum Arbeit leisten oder Stoffwechselvorgänge regeln. Forscher versuchen heute, Proteine, die in bestimmten physiologischen Vorgängen - z. B. bei der Krebsentstehung - die zentrale Rolle spielen, mithilfe des so genannten "Proteomic"-Ansatzes zu identifizieren. Ist ein Protein identifiziert, geht es anschließend darum, seine dreidimensionale Struktur auf atomarer Ebene zu entschlüsseln. Sie wird durch die Reihenfolge (Sequenz) der Protein-Bausteine, den Aminosäuren, gekennzeichnet. Die Struktur bestimmt die Funktion des Proteins. Eine falsch gefaltete Struktur kann fatale Folgen haben und z. B. Krankheiten auslösen. So diskutieren Wissenschaftler gegenwärtig die Rolle von falsch gefalteten Prionen-Proteinen bei der Entstehung von BSE bzw. der Creutzfeld-Jacob-Krankheit.

Eingefrorenes Bild mit der Röntgenstrukturanalyse

Zur Bestimmung von Proteinstrukturen setzten die Forscher bisher zumeist die Röntgenstrukturanalyse ein. Nachdem sie in den 50er-Jahren entwickelt wurde, wird sie heute beinahe automatisiert in "Strukturfabriken" eingesetzt. Die Funktion der Proteine und zeitlich fein abgestimmten Interaktionen der Proteine kann die Methode allerdings in der Regel nicht zeigen. Bei Messzeiten von mehreren Stunden liefert sie konventionell nur ein Bild des eingefrorenen Grundzustands des Proteins. Neue Methoden sind also gefragt, um auch die Dynamik während der Aktion ansehen zu können. In speziellen Fällen konnten neuerdings auch 3D-Strukturen einzelner Zwischenstufen bestimmt werden. Dazu werden entweder bei der Cryo-Technik Zwischenstufen eingefroren (bis zu -200°C), oder die so genannte Laue-Technik an großen Synchrotron-Beschleuniger-Anlagen eingesetzt.

Lichtempfindliche Proteine

Gerwert und seine Mitarbeiter entwickelten jedoch eine andere Methode weiter, die zeitaufgelöste FTIR-Differenzspektroskopie, die zum ersten Mal von ihnen Ende der 80er-Jahre eingesetzt wurde. Sie ermöglichte zu verstehen, wie das Membranprotein Bakteriorhodopsin Protonen pumpt. Als Untersuchungsgegenstand dient jetzt ein PYP, ein Photorezeptor. Photorezeptorproteine enthalten eine chromophore Gruppe, d. h. eine Molekülgruppe, die Licht im sichtbaren Spektralbereich absorbiert. Nach der Anregung durch das Licht durchläuft diese Gruppe eine Konformationsänderung (Isomerisierung). Sie überträgt die Lichtanregung auf das Protein und löst so dessen Funktion aus. Im Fall von PYP handelt es sich um die Bindung eines weiteren Proteins, das das Signal in der Zelle weiterleitet. Das Bakterium regelt so sein Verhalten zum Licht: Es schwimmt zu energieliefernden Lichtquellen hin oder es meidet gefährliches UV-Licht. Auch das menschliche Auge enthält einen solchen Photorezeptor, das Rhodopsin. Die Beobachtung dieser Prozesse im Protein gelang nun der Arbeitsgruppe um Prof. Gerwert in Bochum zusammen mit der von Elisabeth Getzoff vom renommierten Scripps-Institut in La Jolla, Kalifornien.

Abbildungen im Netz

Nebenstehende Abbildungen erläutern das Verfahren. In Abb. 1 ist der Photorezeptor PYP dargestellt. Der lichtempfindliche Chromophor PCA ist in Abb. 2 vergrößert wiedergegeben. Die Untersuchungen zeigen eine schnelle Drehung des vorderen Teils um 0.3 nm (10-9m) in ns (10-9s). Anschließend bewegt sich der terminale Ring um 0.6nm und wird protoniert im mikrosekunden Bereich (Abb 4). Dadurch wird ein weiteres Protein gebunden, das eine Signalkette anregt. Die Prozesse sind in dieser "Nanomaschine" präzise miteinander synchronisiert. Im weiteren Verlauf des Prozesses zeigte sich eine teilweise Entfaltung des Proteins, die mithilfe der Röntgenstrukturanalyse nicht zu sehen ist. Vermutlich behindert die für diese Methode notwendige Kristallisation des Proteins hier die konformelle Änderung. Besonders bei der Untersuchung von Membranproteinen stellt die Kristallisation eine Hürde dar. Da die FTIR Spektroskopie ohne Kristallisation auskommt und unter physiologischen Bedingungen Prozesse in Echtzeit aufnehmen kann, birgt sie ein großes Potenzial für poststrukturelle Genomuntersuchungen, in denen die Funktion von Proteinen und ihre Interaktionen in einem Netzwerk untersucht werden.

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl für Biophysik, Fakultät für Biologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24461, Fax: 0234/32-14-238, Animationen unter http://www:bph.ruhr-uni-bochum.de

Weitere Informationen finden Sie im WWW:

Dr. Josef König | idw

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Was einen guten Katalysator ausmacht
24.05.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics