Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode erlaubt Einblicke in Proteinfunktion

14.03.2001


Das Verfahren der

FTIR-Differenzspektroskopie


Einem Photorezeptor bei der Arbeit zugeschaut RUB-Forscher in März-Ausgabe von "Nature structural biology"

Proteine bei der Arbeit zu beobachten ermöglicht ein neuer interdisziplinärer Ansatz, den Prof. Dr. Klaus Gerwert (Biophysik) und seine Mitarbeiter in den letzten Jahren an der RUB entwickelt haben: Sie nutzen statt der Röntgenstrukturanalyse die FTIR-Differenzspektroskopie und können so in Proteinen ablaufende Prozesse in Echtzeit von Nano (10-9) bis in den Sekundenbereich mit atomarer Auflösung beobachten. Die Anwendung ihrer Methoden am Photorezeptorprotein Photo Active Yellow proteine (PYP) beschreibt ein Artikel in der März-Ausgabe von NATURE Structural Biology. Ein "News and Views"-Kommentar dazu im gleichen Heft hebt die Innovation dieses Ansatzes für poststrukturelle Untersuchungen hervor.

Proteine als Nanomaschinen

Proteine sind vielseitige Nanomaschinen, die auf kleinstem Raum Arbeit leisten oder Stoffwechselvorgänge regeln. Forscher versuchen heute, Proteine, die in bestimmten physiologischen Vorgängen - z. B. bei der Krebsentstehung - die zentrale Rolle spielen, mithilfe des so genannten "Proteomic"-Ansatzes zu identifizieren. Ist ein Protein identifiziert, geht es anschließend darum, seine dreidimensionale Struktur auf atomarer Ebene zu entschlüsseln. Sie wird durch die Reihenfolge (Sequenz) der Protein-Bausteine, den Aminosäuren, gekennzeichnet. Die Struktur bestimmt die Funktion des Proteins. Eine falsch gefaltete Struktur kann fatale Folgen haben und z. B. Krankheiten auslösen. So diskutieren Wissenschaftler gegenwärtig die Rolle von falsch gefalteten Prionen-Proteinen bei der Entstehung von BSE bzw. der Creutzfeld-Jacob-Krankheit.

Eingefrorenes Bild mit der Röntgenstrukturanalyse

Zur Bestimmung von Proteinstrukturen setzten die Forscher bisher zumeist die Röntgenstrukturanalyse ein. Nachdem sie in den 50er-Jahren entwickelt wurde, wird sie heute beinahe automatisiert in "Strukturfabriken" eingesetzt. Die Funktion der Proteine und zeitlich fein abgestimmten Interaktionen der Proteine kann die Methode allerdings in der Regel nicht zeigen. Bei Messzeiten von mehreren Stunden liefert sie konventionell nur ein Bild des eingefrorenen Grundzustands des Proteins. Neue Methoden sind also gefragt, um auch die Dynamik während der Aktion ansehen zu können. In speziellen Fällen konnten neuerdings auch 3D-Strukturen einzelner Zwischenstufen bestimmt werden. Dazu werden entweder bei der Cryo-Technik Zwischenstufen eingefroren (bis zu -200°C), oder die so genannte Laue-Technik an großen Synchrotron-Beschleuniger-Anlagen eingesetzt.

Lichtempfindliche Proteine

Gerwert und seine Mitarbeiter entwickelten jedoch eine andere Methode weiter, die zeitaufgelöste FTIR-Differenzspektroskopie, die zum ersten Mal von ihnen Ende der 80er-Jahre eingesetzt wurde. Sie ermöglichte zu verstehen, wie das Membranprotein Bakteriorhodopsin Protonen pumpt. Als Untersuchungsgegenstand dient jetzt ein PYP, ein Photorezeptor. Photorezeptorproteine enthalten eine chromophore Gruppe, d. h. eine Molekülgruppe, die Licht im sichtbaren Spektralbereich absorbiert. Nach der Anregung durch das Licht durchläuft diese Gruppe eine Konformationsänderung (Isomerisierung). Sie überträgt die Lichtanregung auf das Protein und löst so dessen Funktion aus. Im Fall von PYP handelt es sich um die Bindung eines weiteren Proteins, das das Signal in der Zelle weiterleitet. Das Bakterium regelt so sein Verhalten zum Licht: Es schwimmt zu energieliefernden Lichtquellen hin oder es meidet gefährliches UV-Licht. Auch das menschliche Auge enthält einen solchen Photorezeptor, das Rhodopsin. Die Beobachtung dieser Prozesse im Protein gelang nun der Arbeitsgruppe um Prof. Gerwert in Bochum zusammen mit der von Elisabeth Getzoff vom renommierten Scripps-Institut in La Jolla, Kalifornien.

Abbildungen im Netz

Nebenstehende Abbildungen erläutern das Verfahren. In Abb. 1 ist der Photorezeptor PYP dargestellt. Der lichtempfindliche Chromophor PCA ist in Abb. 2 vergrößert wiedergegeben. Die Untersuchungen zeigen eine schnelle Drehung des vorderen Teils um 0.3 nm (10-9m) in ns (10-9s). Anschließend bewegt sich der terminale Ring um 0.6nm und wird protoniert im mikrosekunden Bereich (Abb 4). Dadurch wird ein weiteres Protein gebunden, das eine Signalkette anregt. Die Prozesse sind in dieser "Nanomaschine" präzise miteinander synchronisiert. Im weiteren Verlauf des Prozesses zeigte sich eine teilweise Entfaltung des Proteins, die mithilfe der Röntgenstrukturanalyse nicht zu sehen ist. Vermutlich behindert die für diese Methode notwendige Kristallisation des Proteins hier die konformelle Änderung. Besonders bei der Untersuchung von Membranproteinen stellt die Kristallisation eine Hürde dar. Da die FTIR Spektroskopie ohne Kristallisation auskommt und unter physiologischen Bedingungen Prozesse in Echtzeit aufnehmen kann, birgt sie ein großes Potenzial für poststrukturelle Genomuntersuchungen, in denen die Funktion von Proteinen und ihre Interaktionen in einem Netzwerk untersucht werden.

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl für Biophysik, Fakultät für Biologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24461, Fax: 0234/32-14-238, Animationen unter http://www:bph.ruhr-uni-bochum.de

Weitere Informationen finden Sie im WWW:

Dr. Josef König | idw

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Lungenentzündung mit Impfstoffen statt Antibiotika behandeln
21.11.2017 | Universität Zürich

nachricht Energiesparmodus Schlaf
21.11.2017 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Gene für das Risiko von allergischen Erkrankungen entdeckt

21.11.2017 | Studien Analysen

Wafer zu Chip: Röntgenblick für weniger Ausschuss

21.11.2017 | Informationstechnologie

Nanopartikel helfen bei Malariadiagnose – neuer Schnelltest in der Entwicklung

21.11.2017 | Biowissenschaften Chemie