Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanohale: Medikamente zum Einatmen

06.02.2006


Nanotechnologie soll neue Möglichkeiten für die Lungentherapie eröffnen - Mit 2,4 Millionen Euro fördert die DFG neue Forschergruppe der Philipps-Universität Marburg mit Gießener und Münchner Beteiligung



Werden Patienten in einigen Jahren Medikamente einfach und schmerzfrei einatmen können - statt sie sich per Spritze verabreichen lassen zu müssen? Die Grundlagen für eine neuartige Lungentherapie werden nun in der von der Deutschen Forschungsgemeinschaft (DFG) mit 2,4 Millionen Euro geförderten Forschergruppe "Polymere Nanocarrier zur pulmonalen Verabreichung von Wirkstoffen (Nanohale)" gelegt. Unter Führung der Philipps-Universität Marburg werden insgesamt sieben Teilgruppen in Marburg, an der Justus-Liebig-Universität Gießen und am GSF-Forschungszentrum für Umwelt und Gesundheit in München ein breit angelegtes und interdisziplinäres Arbeitskonzept verfolgen. Mit der Bewilligung durch die DFG erhöht sich die Zahl der DFG-geförderten Forschergruppen unter Leitung der Philipps-Universität Marburg auf vier (siehe Internetadresse im Anhang).



Sprecher von Nanohale ist Professor Dr. Thomas Kissel, Direktor des Instituts für Pharmazeutische Technologie und Biopharmazie der Philipps-Universität. Stellvertretender Sprecher ist Professor Dr. Andreas Greiner vom Marburger Fachbereich Chemie. Die medizinischen Projekte werden am Lungenzentrum Gießen (University of Giessen Lung Center, UGLC) durchgeführt. Toxikologische Aspekte der Nanotechnologie untersuchen Wissenschaftler des GSF - Forschungszentrum für Umwelt und Gesundheit in München.

Im Förderzeitraum, der sich zunächst über drei Jahre erstreckt, wollen die Nanohale-Forscher neue Ansätze für die Lungentherapie eröffnen. Ihr Ziel sind "Medikamente zum Einatmen". Hierfür sollen neue Trägersysteme ("Carrier") entwickelt werden, die, mit Wirkstoffen beladen, dann vom Patienten eingeatmet werden können. "Nicht die Wirkstoffe selbst sind neu", erklärt Kissel, "vielmehr geht es darum, dass wir mittels geeigneter Trägermaterialien ihre zeitliche und räumliche Verteilung direkt vor Ort in der Lunge steuern können." Hierzu wollen die Forscher Nanoobjekte mit verschiedensten Eigenschaften entwickeln: Partikel, Fasern, Röhren und Molekülkomplexe im Nanoformat sollen abhängig von ihrer Zusammensetzung, Struktur und Dimension auf jeweils spezifische Art mit den Gewebezellen in der Lunge wechselwirken, um dort ihre Medikamentenfracht abzugeben.

Während normalerweise die menschliche Blutbahn als Träger von Wirkstoffen genutzt wird, kann ein solches "Drug Targeting" die Wirkungsweise von Medikamenten entscheidend verbessern, erklärt Kissel: "Insbesondere die Lunge als ’direkt’ zugängliches Organ bietet sich für diese Vorgehensweise an." Mit Nanohale wollen die Marburger, Gießener und Münchener Forscher auch eine Lücke in der deutschen Forschungslandschaft schließen. "Während die USA und Japan das Drug Targeting bereits sehr stark fördern, ist die Schnittstelle zwischen Nanomaterialien und deren medizinischer Anwendung in Deutschland noch wenig untersucht", unterstreicht Professor Dr. Dr. Friedrich Grimminger vom Lungenzentrum Gießen die Bedeutung der DFG-Forschergruppe. Nanohale ist der derzeit größte deutsche Forschungsverbund, der sich diesem Thema widmet.

Die neue Forschergruppe setzt sich aus Grundlagenwissenschaftlern, Pharmazeuten, Medizinern und Materialwissenschaftlern zusammen. Neben Thomas Kissel und Andreas Greiner werden die Arbeitsgruppen von den Marburger Wissenschaftlern Professor Dr. Joachim H. Wendorff (Fachbereich Chemie), Professor Dr. Udo Bakowsky (Fachbereich Pharmazie), Professor Dr. Frank Czubayko (Fachbereich Medizin), von den Gießener Medizinprofessoren Dr. Dr. Friedrich Grimminger und Dr. Werner Seeger sowie von Professor Dr. Holger Schulz vom GSF - Forschungszentrum für Umwelt und Gesundheit geleitet.

"Bei unserem Projekt kommt es nun darauf an", so Kissel, "zunächst den ’idealen Nanoträger’ zu entwickeln." Ein solcher muss unter anderem mit einer möglichst großen Wirkstoffmenge beladen werden können. Außerdem muss er verschiedene intra- und extrazelluläre Barrieren überwinden und soll vom Organismus schließlich schnell wieder abgebaut werden, sodass sich allein der Wirkstoff im Zellgewebe ablagert. Etwa in drei Jahren, so schätzt der Pharmakologe und Nanowissenschaftler, "können wir die Nanoträger dann auch im Tiermodell testen."

Kontakt

Philipps-Universität Marburg
Professor Dr. Thomas Kissel: Philipps-Universität Marburg, Institut für Pharmazeutische Technologie und Biopharmazie, Ketzerbach 63, 35037 Marburg
Tel.: (06421) 28 25881, E-Mail: mailto:kissel@staff.uni-marburg.de, Internet:http://www.uni-marburg.de/iptb

Professor Dr. Andreas Greiner: Philipps-Universität Marburg, Institut für Physikalische Chemie, Kernchemie und Makromolekulare Chemie, Fachbereich Chemie, Hans-Meerwein-Straße, 35032 Marburg
Tel.: (06421) 28 25573, E-Mail: greiner@staff.uni-marburg.de, Internet: http://www.chemie.uni-marburg.de/~akgr

Justus-Liebig-Universität Gießen:
Professor Dr. Werner Seeger
Direktor Medizinische Klinik und Poliklinik II
Chairman University of Giessen Lung Center (UGLC)
Klinikstrasse 36, 35392 Gießen
Tel.: (0641) 99-4 23 50, E-mail: mailto:Werner.Seeger@innere.med.uni-giessen.de, mailto:Werner.Seeger@UGLC.de

Thilo Körkel | idw
Weitere Informationen:
http://www.UGLC.de
http://www.uniklinikum-giessen.de/med2/
http://www.uni-marburg.de/forschung/forschungsprofil/fgruppen

Weitere Berichte zu: DFG Einatmen Lungentherapie Medikament Nanohale Wirkstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften