Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Eine Streckbank für das DNA-Knäuel" - Erbmolekül ist lang gestreckt experimentell besser zugänglich

27.01.2006


Die DNA als Knäuel: Zwar ist das Erbmolekül bekanntermaßen als Doppelhelix oder eine Art gewendelte Strickleiter aufgebaut. Unter normalen Umständen ist diese Struktur aber noch sehr viel stärker aufgewickelt. In lebenden Zellen bietet das den Vorteil, dass die um ein Vielfaches längere DNA in den Zellkern passt. Bei Experimenten und anderen Anwendungen aber ergibt sich die Schwierigkeit, das so stark aufgedrehte DNA-Molekül zugänglich zu machen. Der Doktorandin Marion Hochrein am Lehrstuhl für Experimentalphysik von Professor Dr. Joachim Rädler an der Ludwig-Maximilians-Universität (LMU) München gelang nun, DNA mit vergleichsweise geringem Aufwand auszustrecken. Wie die beiden Forscher und weitere beteiligte Kollegen in der Online-Ausgabe von "Physical Review Letters" schreiben, verlieren die Nukleinsäuremoleküle ihre Knäuelstruktur, wenn sie auf bestimmte Membranen mit Oberflächen mit periodisch angeordneten, parallelen Gräben aufgebracht werden. "Die Ausrichtung der langen DNA ist für viele biotechnologische Anwendungen, etwa das optische Sequenzieren, eine Notwendigkeit", berichtet Hochrein. "Zum anderen ist die ausgestreckte DNA für die Polymerphysik interessant, die das Verhalten des DNA-Moleküls analysiert."



Vor allem wenn die Interaktion von DNA mit anderen Biomolekülen untersucht werden soll, muss das Molekül ausgestreckt werden, um überhaupt zugänglich zu sein. Hochrein und ihre Kollegen nutzten dafür Membranen aus Lipiden, also wasserunlöslichen Molekülen, zu denen unter anderem Fette und Fettsäuren gehören. Die Membranen dürfen keine glatte Oberfläche zeigen, sondern müssen langgestreckte regelmäßige "Furchen" und Erhebungen bilden. In eine "Ecke" dieser Vertiefungen nun legen sich die aufgewickelten DNA-Fäden, strecken sich aus und sind aufgrund der regelmäßigen Anordnung der Furchen, in denen sie sich befinden, dann auch gleichmäßig ausgerichtet. Diese Wirkung ist auf die Ladungen der DNA und der Membran zurückzuführen. Die DNA ist ein großes, negativ geladenes Biomolekül. Der konkav gekrümmte Bereich der Furchen, an den die DNA anliegt, erlaubt besonders viel Kontakt zwischen den negativ geladenen DNA-Molekülen und den positiv geladenen Lipiden. Das könnte auch erklären, warum sich die DNA-Moleküle in den am stärksten gekrümmten Bereichen der Vertiefungen und nicht etwa auf den benachbarten Erhebungen ausrichten.



Die bis dahin eingesetzten Methoden zur Ausrichtung von DNA waren sehr viel komplizierter in der Anwendung. "Unser Ansatz dagegen bietet ganz andere Möglichkeiten, die Form von DNA zu kontrollieren", so Hochrein. "Es können jetzt nämlich sehr einfach große DNA-Mengen auf die entsprechenden Membranen aufgebracht werden, wo sie sich dann ausrichten und ausstrecken. So sind sie frei zugänglich für das umgebende wässrige Medium und darin gelöste Moleküle. Das System erleichtert deshalb umfangreiche Experimente und auch die Analyse fundamentaler biologischer Prozesse, die mit DNA und anderen Biomolekülen zu tun haben." Die DNA kann noch zusätzlich manipuliert werden, indem elektrische Felder angelegt oder Proteine in die Membran eingebracht werden. Das neue System und die vielfältigen damit verbundenen Möglichkeiten werden, so vermuten die Forscher, für sehr viele Biophysiker von Interesse sein.

Publikation:

"DNA Localization and Coil Stretching on Periodically Micro-structured Lipid Membranes", Marion B. Hochrein, Judith A. Leierseder, Leonardo Golubovic, and Joachim O. Rädler, Phys. Rev. Lett., 2006, online, Publikation in Print folgt

Ansprechpartner:

Dr. Marion Hochrein
Lehrstuhl für Experimentalphysik, Physik weicher Materie und Biophysik von Prof. Dr. Joachim Rädler
Tel.: 089-2180-2704
Fax: 089-2180-3182
E-Mail: Marion.Hochrein@physik.uni-muenchen.de

www.uni-muenchen.de/ | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Biomolekül DNA DNA-Molekül Erbmolekül Lipid Membran Molekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie