Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man ‚Kontakt’ hält

17.01.2006


Max-Planck-Forschern gelingt erster Einblick in die molekularen Vorgänge, die Synapsen in Form halten


Nervenzelle mit intakten Synapsen. Im Mikroskop erscheinen Synapsen von Nervenzellen des Hippocampus (Ammonshorn) als kleine, pilzförmige Ausstülpungen. Bild: Max-Planck-Institut für Entwicklungsbiologie


Nervenzelle ohne Staufen2. Im oberen Bild sieht man den Dendriten einer unbehandelten Zelle, im unteren Bild, den einer Zelle, in der das Staufen2-Protein fehlt. Der empfangende Teil der Synapsen (dendritische Dornenfortsätze) ist mit PSD95-GFP markiert, um die stark reduzierte Anzahl an Synapsen in den Staufen2-defizienten Nervenzellen zu verdeutlichen. Bild: Max-Planck-Institut für Entwicklungsbiologie



Nervenzellen können über spezielle Verbindungsstellen, die Synapsen, Informationen speichern und untereinander weitergeben. Synapsen entscheiden also mit darüber, was wir uns merken und was nicht. Beim Lernen verändern sich diese Kontaktstellen sowohl in ihrer Struktur als auch in ihren funktionellen Eigenschaften. Die dafür verantwortlichen molekularen Vorgänge sind jedoch nahezu unverstanden. Forscher um Michael Kiebler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen (jetzt: Zentrum für Hirnforschung der Medizinischen Universität Wien) haben nun ein Protein identifiziert, dass für die Aufrechterhaltung von Synapsen unverzichtbar ist: Wird in einer Nervenzelle das Staufen2-Protein ausgeschaltet, verliert sie einen großen Teil ihrer Synapsen. Die Signalübertragung an den verbleibenden Kontaktstellen ist darüber hinaus stark beeinträchtigt. Staufen-Proteine sind am Transport von molekularen Blaupausen (Boten-RNA) an spezielle Orte in einer Zelle beteiligt. Das ermöglicht es einer Zelle, Proteine nur dort herzustellen. Weil Synapsen ohne Staufen2-Protein in ihrer Struktur und Funktion gestört sind, liegt es nahe, dass der Transport von Boten-RNA an die Synapse für deren Erhalt und auch für die Speicherung von Gedächtnisinhalten von zentraler Bedeutung ist (Journal of Cell Biology, 17. Januar 2006).



Nervenzellen empfangen Signale von anderen Nervenzellen über weit verzweigte Ausläufer, die Dendriten, die den Ästen eines Baumes ähneln. Die eingehenden Informationen werden im Körper der Zelle verrechnet und über das Axon, einem langen Fortsatz der Zelle, an nachgeschaltete Nervenzellen weitergegeben. Jeder Kontakt zwischen Nervenzellen erfolgt an hoch-spezialisierten Bereichen, den Synapsen. An diesen Kontaktstellen werden Informationen nicht nur passiv weitergegeben. Sie können sich auch - je nach Input - verändern und so neue Gedächtnisinhalte speichern.

Eine Synapse besteht aus zwei Teilen - einer entspringt dem Axon der sendenden Zelle, der andere einem Dendriten der empfangenden Zelle (s. Abb. 1). Beide Teile verfügen über eine spezielle Ausstattung an Molekülen, die sie klar vom Rest der Zelle unterscheiden. Darüber hinaus können diese Kontaktstellen durch eingehende Signale sowohl ihre Struktur als auch ihre Eigenschaften verändern. In Dendriten entstehen diese Veränderungen unter anderem erst dann, wenn bestimmte Proteine an der Synapse hergestellt werden. Wichtige Voraussetzung für diese Proteinsynthese ist jedoch, dass die entsprechenden Boten-RNAs (mRNAs), die Informationen über den Bauplan des zu produzierenden Proteins in sich tragen, tatsächlich zu dieser Synapse gelangen. Dazu müssen diese mRNAs im Zellkörper von speziellen RNA-bindenden Proteinen erkannt und an die unter Umständen sehr weit entfernte Synapse transportiert werden. Das Staufen2-Protein ist an diesem Transportvorgang beteiligt.

Bernhard Götze und Paolo Macchi in der Gruppe von Michael Kiebler konnten nun erstmals nachweisen, dass Staufen2-Protein unverzichtbar für den Erhalt von Synapsen ist. Dazu hatten die Forscher einzelne Proteine in den Nervenzellen ausgeschaltet. Fehlte das Hirn-spezifische Staufen2-Protein, so war die Architektur der Synapsen empfindlich gestört. Statt vieler pilzförmiger Ausstülpungen bildet die Zelle nur wenige lange und dünne Ausläufer (s. Abb. 2), die in ihrer Form unreifen Synapsen ähneln. Eine genauere Analyse des Aktin-Zellskeletts ergab einen ersten Hinweis auf eine mögliche Erklärung für die beobachteten Änderungen an den Synapsen. Aktin ist ein zentrales Protein des Zellgerüsts, das Synapsen ihre Form gibt. Die formlosen Synapsen in Nervenzellen ohne Staufen2-Protein enthalten sehr viel weniger Aktinfäden als die Synapsen in normalen Zellen. Die Boten-RNA für Aktin wird normalerweise in die Dendriten transportiert und zum Teil erst dort in Proteine abgeschrieben. Ist Staufen2 als Transportprotein in der Nervenzelle nicht vorhanden, gelangen weniger Boten-RNA an die Synapsen, was die veränderte Form der Synapsen verursachen könnte.

"Wir wollten deshalb wissen, ob die Signalübertragung in den Zellen auch ohne Staufen2 noch funktioniert", erläutert Michael Kiebler. Um das herauszufinden, arbeiteten die Forscher mit der Arbeitsgruppe von Stefan Boehm am Pharmakologischen Institut der Medizinischen Universität Wien zusammen. Bei der Messung der elektrischen Aktivität einzelner Synapsen stellte sich heraus, dass die Signalübertragung zwischen Zellen ohne das Staufen2-Protein nur noch eingeschränkt funktionierte. "Das war ein wichtiger Hinweis darauf, dass Staufen2 in Nervenzellen für die Ausbildung funktionierender Synapsen unverzichtbar ist," so Kiebler. Seiner Arbeitsgruppe ist es damit zum ersten Mal gelungen, eine Brücke zu schlagen zwischen molekularen Vorgängen im empfangenden Teil einer Nervenzelle und Veränderungen in Struktur und Funktion ihrer Synapsen. Dies könnte zu einem besseren Verständnis der molekularen Mechanismen beitragen, die der zentralen Fähigkeit des Gehirns, zu lernen und sich zu erinnern, zugrunde liegen.

Originalveröffentlichung:

Goetze B, Tuebing F, Xie Y, Dorostkar MM, Thomas S, Pehl U, Boehm S, Macchi P, and Kiebler MA
The brain-specific double-stranded RNA binding protein Staufen2 is required for dendritic spine morphogenesis.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Boten-RNA Dendrit Nervenzelle Protein Staufen2 Staufen2-Protein Synapse Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften