Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antihaft-Beschichtung lässt Insekten keine Chance

12.01.2006


Gleitfalle der Kannenpflanze Nepenthes alata. Im Hintergrund: Rasterelektronenmikroskopische Aufnahme der oberen und unteren Wachsschicht. Die eingefügten Schemata erklären, auf welche Weise die beiden Wachsschichten die Haftkraft der Insekten reduzieren: Durch die obere Schicht werden die Insektenfüße verschmutzt und die untere Schicht vermindert die Kontaktbildung zwischen den adhäsiven Hafthaaren der Füße und dem Substrat. Bild: Max-Planck-Institut für Metallforschung


Stuttgarter Wissenschaftler zeigen, wie fleischfressende Pflanzen mit raffiniertem Materialdesign erfolgreich Fallen stellen

... mehr zu:
»Insekt »Schicht »Wachsschicht

Pflanzen sind in der Lage, mit Hilfe organischer Substanzen ähnliche Effekte zu erzielen wie wir sie zumeist nur von technischen Materialien kennen. Das haben Wissenschaftler des Max-Planck-Instituts für Metallforschung und der Universität Hohenheim am Beispiel fleischfressender Kannenpflanzen gezeigt.

Diesen Pflanzen gelingt es mit einer doppelt mit Wachs beschichteten Falle, Insekten zu fangen und festzuhalten.


Während die Kristalle der oberen Wachsschicht die Haftorgane der Insekten verschmutzen, reduziert die untere Wachsschicht die Haftfläche, über die Insektenfüße mit der Pflanzenoberfläche in Berührung kommen: Die Insekten rutschen in die kannenförmige Falle und werden dort verdaut (The Journal of Experimental Biology, Dezember 2005). Aus diesen Erkenntnisse ergeben sich auch Hinweise für die Entwicklung von Antihaftfolien.

Karnivore, also fleischfressende Pflanzen sind eine hoch spezialisierte ökologische Gruppe von Pflanzen. Sie fangen und verdauen kleine Tiere, meist Insekten, um Nährstoffe, wie Stickstoff und Phosphor, zu gewinnen, die im Boden fehlen. Diese Pflanzen entwickelten spezielle Fangorgane, um Beute zu fangen. Morphologie und Fangmechanismen der Fallen variieren zwischen den verschiedenen Arten.

Die Gleitfallen der tropischen Kannenpflanze Nepenthes gehören zu den passiven Fallen. Sie bewegen sich nicht, um Tiere zu fangen. Obwohl die Ursprünge der Kannen wie auch anderer Fallen carnivorer Pflanzen in den Blattorganen liegen, sind es doch sehr Blatt-untypische Strukturen, die von den Blättern herabhängen. Nepenthes-Kannen besitzen eine komplexe Organisation mit Deckel, Peristom (Kannenrand) sowie einer Gleit- und einer Verdauungszone mit einem Vorrat an Verdauungsflüssigkeit. Mit diesen Kannen werden Insekten angelockt, festgehalten und schließlich verdaut.

Die Gleitzone hat eine Schlüsselrolle beim erfolgreichen Fallenstellen. Dieser Bereich ist von einer Schicht kristalliner Wachse bedeckt, auf der die Insekten den Halt verlieren und in die Verdauungsflüssigkeit hinab rutschen. Bei bisherigen Studien hat man sich entweder mit der Wachsstruktur oder dem Insektenverhalten in der Falle befasst.

Die Forscher haben deshalb die Mikromorphologie, chemische Zusammensetzung und mechanischen Eigenschaften der Wachse untersucht und mit Experimenten zum Insektenverhalten kombiniert. Danach besteht diese Wachsbedeckung aus zwei übereinanderliegenden Schichten, die sich in ihrer Struktur, chemischen Komposition, Härte und Elastizität unterscheiden. Diese Wachsschichten reduzieren die Haftkraft der Insekten auf zwei ganz unterschiedlichen Wegen.

Die obere Wachsschicht besteht aus einzelnen unregelmäßigen 30-50 Nanometer dicken Plättchen, die sich mehr oder weniger senkrecht zur anderen Schicht und zur Oberfläche der Kannenwand anordnen. Ihre Orientierung ist eher zufällig; die Plättchen bilden keine klaren Muster. Die Kristalle bestehen aus vielen kleinen, parallel zueinander ausgerichteten Schichten und besitzen einen kleinen "Stiel", der sich in derselben Ebene wie das Kristallplättchen befindet.

Die untere Schicht ähnelt einem Schaumstoff. Sie besteht aus miteinander verbundenen Membranplättchen, die in spitzem Winkel aus der Oberfläche herausragen und keine klare Ausrichtung zeigen. Härte und Elastizität beider Schichten unterscheiden sich um mehr als eine Größenordnung: Die obere Wachsschicht ist viel weicher und geschmeidiger als die untere Schicht.

In Laborexperimenten mit der Käfern der Art Adalia bipunctata zeigte sich, dass die Wachsschichten - im Vergleich zu Glas bzw. der entwachsten Kannenwand als Referenzoberflächen - die Haftkraft der Insekten signifikant verringerten. Während durch die obere Schicht die Insektenfüße verschmutzt und damit weniger haftfähig werden, reduziert die untere Schicht die Fläche, über die die Füße mit der Falle Kontakt haben.

Originalveröffentlichung:

Gorb E., Haas K., Henrich A., Enders S., Barbakadze N. and Gorb S
Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment.
The Journal of Experimental Biology, 2005, vol. 208, 4651-4662

Gorb E., Kastner V., Peressadko A., Arzt E., Gaume L., Rowe N. and Gorb S.
Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in the insect trapping and retention
The Journal of Experimental Biology, 2004, vol. 207, 2947-2963

Gaume L., Perret P., Gorb E., Gorb S., Labat J.-J. and Rowe N.
How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants
Arthropod Structure & Development, 2004, vol. 33, 103-111

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Insekt Schicht Wachsschicht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik