Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Homburger Forscher publizieren zur Entschlüsselung des Geschmacks in Nature

11.10.2001


Sauer macht nicht nur lustig. Vielmehr kann es lebenswichtig sein, den Geschmack eines potenziellen Nahrungsmittels zu erkennen. David Stevens und Bernd Lindemann von der Fachrichtung Physiologie der Medizinischen Fakultät der Saar-Universität arbeiten seit Jahren zusammen mit den Arbeitsgruppen Kaupp (Jülich) und Meyerhof (Potsdam) an der Entschlüsselung des Geschmackssinns. Die Wissenschaftler versuchen dabei auf molekularer Ebene zu klären, wie ein Geschmackseindruck entsteht. Die Ergebnisse ihrer Arbeit zum Sauergeschmack haben sie nun in der Oktober-Ausgabe von Nature veröffentlicht, einer der weltweit führenden Fachzeitschriften für Naturwissenschaftler. Der Artikel zeigt, dass ein "Schrittmacherkanal" vom Typ HCN als Sauerrezeptor fungiert.

... mehr zu:
»HCN »HCN1 »HCN4 »Nahrung »Nature

Unser Geschmacksinn hat die lebenswichtige Funktion, die Nahrung auf Qualität und Bekömmlichkeit zu überprüfen. Er steuert unsere Nahrungsauswahl u.a. durch Lust/Unlust-Empfindungen. Das positive Gefühl, das ein guter Geschmack auslöst, ist ein wesentlicher Teil unserer biologischen und kulturellen Lebensqualität.

Süß und umami (Fleisch- oder Proteingeschmack) leiten den Menschen zu kalorienreicher Nahrung. Diese Geschmackseindrücke gehen typischerweise mit einem Lustempfinden einher. Bitter hingegen ist ein Warnsignal. Pflanzen bilden zu ihrer Verteidigung viele giftige und gleichzeitig bittere Stoffe wie z.B. Digitalis im Fingerhut und Alkaloide in der Tollkirsche. Bitter bedeutet: "Vorsicht, ich mach’ Dich krank." Nahrung mit kräftigem Bittergeschmack ist für uns Menschen ungenießbar.

Sauer warnt vor unreifen Früchten und verdorbenen Speisen. Stark saure Speisen sind ebenfalls ungenießbar. Zusammen mit salzig dient die saure Geschmacksqualität der Regulation unseres Wasser- und Mineralhaushaltes. Bei Mangelzuständen sind diese Geschmäcke von größter Bedeutung.

Schrittmacherkanal vom Typ HCN als Sauerrezeptor

In elektrophysiologischen Experimenten beobachteten die Forscher zunächst, dass die geschmacksempfindlichen Zellen der Zunge überraschenderweise einen Ionenkanal enthalten, der sonst als Teil der Schrittmacher-Automatik für das Herz und für regelmäßig feuernde Nervenzellen eingesetzt wird. Es handelt sich um den so genannten HCN-Kanal. (Für den Nicht-Fachmann: Kanäle sind Proteine, die einen schnellen Durchtritt von Ionen durch Zellmembranen ermöglichen.) Was macht ein Taktgeber-Baustein in Geschmackszellen? Hat der HCN vielleicht noch andere, bisher unbekannte Eigenschaften und Funktionen? Es zeigte sich weiter, dass die HCN-Kanäle in den Geschmacksknospen in den Varianten HCN1 und HCN4 exprimiert werden, und dass sie fast ausschließlich in Zellen vorkommen, die auf saure Reize reagieren können. So kommen sie nicht in denjenigen Zellen vor, die auf Süß-Reize oder Bitter-Reize reagieren. Weiterhin zeigte die Elektrophysiologie, dass mit der Aktivierung der sauer-detektierenden Zellen der Ionenstrom durch den HCN verstärkt wird, als wenn der Kanal durch den Sauer-Reiz selbst aktiviert würde. Eine solche Eigenschaft des HCN war aber nicht bekannt. Auf Grund der Literatur erschien sie eher unwahrscheinlich. Im weiteren Verlauf dieser Untersuchungen wurde der HCN-Kanal in einer Zell-Linie exprimiert, wo er bequemer erforscht werden konnte. Auch in der Zell-Linie reagierten HCN1 und 4 auf Sauer-Reize. Somit wurde eine neue Eigenschaft der HCN-Taktgeberkanäle entdeckt: Sie sind eben nicht nur Taktgeber-Baustein, sondern können auf extrazelluläre Protonen mit einer Veränderung ihrer Aktivierungskurve reagieren. Das macht die HCN-Kanäle zu proton-gesteuerten Kanälen, die als molekulare Rezeptoren für Sauer-Reize dienen können.
Vielleicht erinnern Sie sich daran, wenn Sie wieder mal in eine Zitrone beißen?

Der neue Artikel "Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli" ist zu finden unter: Stevens, D. R., R. Seifert, B. Bufe, F. Müller, E. Kremmer, R. Gauss, W. Meyerhof, U. B. Kaupp, and B. Lindemann. 2001. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature. 413: 631-635.

Ein Übersichtsartikel von Prof. Lindemann zum Thema Geschmack ist bereits im September in Nature erschienen: Lindemann, B. 2001. Receptors and
transduction in taste. Nature. 413: 219-225.


Sie haben noch Fragen? Dann wenden Sie sich bitte an

Prof. Bernd Lindemann, Tel.: 06841-16-26464
E-Mail: phblin@uniklinik-saarland.de

oder

David Stevens, PhD, Tel.: 06841-16-26268
E-Mail: phdste@med-rz.uni-saarland.de

Claudia Brettar | idw
Weitere Informationen:
http://www.uniklinik-saarland.de/med_fak/physiol2/LDM/index.html

Weitere Berichte zu: HCN HCN1 HCN4 Nahrung Nature

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie