Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematisches Modell zur Vielfalt der Gehirne

06.01.2006


Max-Planck-Forscher am Bernstein Center for Computational Neuroscience Göttingen beschreibt Prinzipien der Selbstorganisation bei der Entwicklung des Gehirns. Mit Hilfe der Mathematik kann der Göttinger Neurophysiker Dr. Fred Wolf die Ausbildung individueller neuronaler Architekturen bei der Gehirnentwicklung erklären.


Kortikale Orientierungskarte im Sehsystem der Katze (ca. 6mm²) S. Löwel, IfN Magdeburg



Das menschliche Gehirn enthält Milliarden von Nervenzellen,von denen jede einzelne an durchschnittlich zehntausend Kontaktstellen mit anderen verknüpft ist. Damit dieser hochkomplexe Apparat solch erstaunliche Leistungen vollbringen kann wie Denken, Lernen oder Sehen, muss die Verschaltung während der Entwicklung des Gehirns im Embryo und frühem Kindesalter präzise geregelt sein. Das heißt aber keinesfalls, dass die Gehirnentwicklung immer nach dem gleichen Schema abläuft - schließlich ist jedes Gehirn ein einzigartiges Produkt und unterscheidet sich von jedem anderen. Dennoch folgt die Entwicklung bestimmten Prinzipien und Gesetzen. Fred Wolf, Leiter der Forschungsgruppe Theoretische Neurophysik am Max-Planck-Institut für Dynamik und Selbstorganisation und Gründungsmitglied des Bernstein Center for Computational Neuroscience Göttingen hat für die Entwicklung des visuellen Kortex, der primären Verarbeitungsstation optischer Eindrücke, nun solche Prinzipien mathematisch formuliert. Wolfs Untersuchungen zeigen, warum die gleichen Gesetzmäßigkeiten in verschiedenen Gehirnen in der Regel zu sehr verschiedenen neuronalen Architekturen führen - selbst bei eineiigen Zwillingen. Die Arbeit wurde in dem renommierten Fachmagazin Physical Review Letters (Band 95, 208701) veröffentlicht.



Jeder visuelle Eindruck unserer Umwelt enthält eine Vielzahl von Linien und Konturen. Neurone im primären visuellen Kortex reagieren stark auf Konturelemente und sind dabei jeweils auf eine bestimmte Orientierung spezialisiert: Manche Neurone reagieren auf waagerechte Linien, andere zum Beispiel auf Konturen im 30-Grad Winkel. Damit das Gehirn aus dem Aktivitätsmuster aller Neurone ein Bild zusammensetzen kann, kommt es sehr genau darauf an, wie Neurone mit bestimmter Orientierungspräferenz angeordnet und wie sie mit anderen Neuronen verschaltet sind.

Mit neuen bildgebenden Methoden kann man heutzutage eine genaue Karte der Verteilung der verschiedenen Neurone mit ihren spezifischen Orientierungspräferenzen im Kortex erstellen. Neurone unterschiedlicher Orientierungspräferenz bilden ein kompliziertes Muster, wobei sich Neurone, die auf die gleiche Richtung reagieren, zu Bereichen zusammenfügen und Bereiche ähnlicher Orientierungspräferenz meist nebeneinander liegen (siehe Abbildung). Die Anordnung der Neurone bestimmter Orientierungspräferenz bildet kein periodisches "Kachelmuster", sondern ist scheinbar chaotisch und unterscheidet sich von Gehirn zu Gehirn. Domänen, die einen kleinen Teil des Gesichtsfelds repräsentieren, enthalten jeweils Gruppen von Neuronen jeder Orientierungspräferenz. Damit das Gehirn ein Bild vollständig erfassen, zum Beispiel einen durchgängigen Strich als solchen erkennen kann, sind Neurone aus verschiedenen Bereichen des Kortex, die auf die gleiche Orientierung reagieren, miteinander verknüpft.

Die Muster der Orientierungspräferenz entstehen beim Menschen und anderen Säugetieren in den ersten Tagen nach der Geburt durch einen Selbstorganisationsprozess. Welche neuronale Kontakte neu entstehen und welche aufgelöst werden, hängt von den schon vorhandenen Kontakten ab. Selbstorganisationsprozesse sind in der Natur keine Seltenheit - allerdings ist die Entwicklung des visuellen Kortex ein Sonderfall unter diesen Prozessen. Die meisten Selbstorganisationprozesse sind physikalische Prozesse oder chemische Reaktionen, bei denen jedes Element nur mit seinem direkten Nachbarn reagiert. Das ist im visuellen Kortex anders. Neurone treten über weite Distanzen miteinander in Kontakt, damit - wie oben beschrieben - das Gehirn aus dem Aktivitätsmuster der Kortexneurone ein Bild erstellen kann. Nur unter Berücksichtigung dieser biologisch relevanten Tatsache ist es Wolf gelungen, ein mathematisches Modell zu entwickeln, das die Prozesse der Musterbildung im Gehirn realitätsnah nachbildet und in ein stabiles Gleichgewicht mündet.

Selbstorganisationsprozesse lassen sich - zumindest theoretisch - im Computer simulieren. Allerdings würde das für einen solch komplexen Prozess wie die dynamische Entwicklung des primären visuellen Kortex die Rechenkapazität jedes heutigen Computers sprengen. Um trotzdem zu einem mathematischen Modell zu kommen, benutzte Wolf Verfahren, das auf so genannten Symmetrieannahmen beruht. Wenn das mathematische Modell die Entstehung eines bestimmten Musters erlaubt - so lautete die Annahme - dann muss auch eine verschobene, gedrehte oder gespiegelte Version dieses Musters zulässig sein. Die Annahme ergibt sich zum Beispiel daraus, dass kein Ort innerhalb eines primären visuellen Kortexareals sich gegenüber einem anderen anatomisch auszeichnet. In der Theorie der Selbstorganisation entwickelte mathematische Methoden erlauben es, aus solchen Symmetrieannahmen Vorhersagen abzuleiten. Dadurch, dass Wolf diese Methoden für den visuellen Kortex nutzbar gemacht hat, wird es nun möglich, mit wesentlich weniger Rechenaufwand die Bildung neuronaler Muster quantitativ zu beschreiben - im Prinzip reichen Papier und Bleistift.

Das erste theoretische Modell, das die Selbstorganisation des Orientierungsmusters im visuellen Kortex simuliert, wurde im Jahre 1972 von Christoph von der Malsburg am Max-Planck-Institut für biophysikalische Chemie in Göttingen vorgeschlagen. Das Modell hat einen schwerwiegenden Nachteil - es lieferte ein streng periodisches Muster, hatte also hinsichtlich der räumlichen Anordnung der Neurone mit der Realität wenig zu tun. Auch nachfolgende Modelle, die in den vergangenen Jahren entwickelt wurden, brachten in dieser Hinsicht keine Verbesserung. Das Modell von Wolf ist das erste, das die Tatsache mit einbezieht, dass Neurone über längere Distanzen miteinander in Kontakt treten können und damit auch das erste, das realistische Muster vorhersagt, die nicht streng periodisch sind. Zusätzlich stellte sich bei den mathematischen Untersuchungen heraus, dass es in diesem Modell eine sehr große Zahl von möglichen Mustern gibt, deren Entstehung mit den gleichen mathematischen Gesetzen vereinbar sind. So lässt sich dann auch erklären, dass jedes Gehirn ein anderes Muster neuronaler Orientierungspräferenz hat, auch wenn die Gehirnentwicklung strengen mathematischen Regeln folgt.

Quelle:
Fred Wolf (2005). Symmetry, Multistability, and Long-Range Interactions in Brain Development. Phys. Rev. Lett. 95, 208701

Kontakt:
Dr. Fred Wolf
Max-Planck-Institut für Dynamik und Selbstorganisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
Tel: 0551 5176-423
Fax: 0551 5176-439
Email: fred@chaos.gwdg.de

Das Bernstein Center for Computational Neuroscience (BCCN) Göttingen ist ein vom BMBF gefördertes Verbundprojekt des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, der Georg-August-Universität Göttingen, dem Deutschen Primaten Zentrum und der Otto Bock HealthCare GmbH. In dem interdisziplinären Verbund werden experimentelle Untersuchungen am Nervensystem mit mathematischen Modellen und Computersimulationen vereint. Die Kombination von Theorie und Praxis trägt zu einem besseren Verständnis der Gehirnfunktionen bei und führt damit z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik.

Dr. Tobias Niemann | idw
Weitere Informationen:
http://www.ds.mpg.de/
http://www.bccn-goettingen.de
http://www.bernstein-centers.de

Weitere Berichte zu: Computational Kortex Neuron Neuroscience Orientierungspräferenz Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte