Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematisches Modell zur Vielfalt der Gehirne

06.01.2006


Max-Planck-Forscher am Bernstein Center for Computational Neuroscience Göttingen beschreibt Prinzipien der Selbstorganisation bei der Entwicklung des Gehirns. Mit Hilfe der Mathematik kann der Göttinger Neurophysiker Dr. Fred Wolf die Ausbildung individueller neuronaler Architekturen bei der Gehirnentwicklung erklären.


Kortikale Orientierungskarte im Sehsystem der Katze (ca. 6mm²) S. Löwel, IfN Magdeburg



Das menschliche Gehirn enthält Milliarden von Nervenzellen,von denen jede einzelne an durchschnittlich zehntausend Kontaktstellen mit anderen verknüpft ist. Damit dieser hochkomplexe Apparat solch erstaunliche Leistungen vollbringen kann wie Denken, Lernen oder Sehen, muss die Verschaltung während der Entwicklung des Gehirns im Embryo und frühem Kindesalter präzise geregelt sein. Das heißt aber keinesfalls, dass die Gehirnentwicklung immer nach dem gleichen Schema abläuft - schließlich ist jedes Gehirn ein einzigartiges Produkt und unterscheidet sich von jedem anderen. Dennoch folgt die Entwicklung bestimmten Prinzipien und Gesetzen. Fred Wolf, Leiter der Forschungsgruppe Theoretische Neurophysik am Max-Planck-Institut für Dynamik und Selbstorganisation und Gründungsmitglied des Bernstein Center for Computational Neuroscience Göttingen hat für die Entwicklung des visuellen Kortex, der primären Verarbeitungsstation optischer Eindrücke, nun solche Prinzipien mathematisch formuliert. Wolfs Untersuchungen zeigen, warum die gleichen Gesetzmäßigkeiten in verschiedenen Gehirnen in der Regel zu sehr verschiedenen neuronalen Architekturen führen - selbst bei eineiigen Zwillingen. Die Arbeit wurde in dem renommierten Fachmagazin Physical Review Letters (Band 95, 208701) veröffentlicht.



Jeder visuelle Eindruck unserer Umwelt enthält eine Vielzahl von Linien und Konturen. Neurone im primären visuellen Kortex reagieren stark auf Konturelemente und sind dabei jeweils auf eine bestimmte Orientierung spezialisiert: Manche Neurone reagieren auf waagerechte Linien, andere zum Beispiel auf Konturen im 30-Grad Winkel. Damit das Gehirn aus dem Aktivitätsmuster aller Neurone ein Bild zusammensetzen kann, kommt es sehr genau darauf an, wie Neurone mit bestimmter Orientierungspräferenz angeordnet und wie sie mit anderen Neuronen verschaltet sind.

Mit neuen bildgebenden Methoden kann man heutzutage eine genaue Karte der Verteilung der verschiedenen Neurone mit ihren spezifischen Orientierungspräferenzen im Kortex erstellen. Neurone unterschiedlicher Orientierungspräferenz bilden ein kompliziertes Muster, wobei sich Neurone, die auf die gleiche Richtung reagieren, zu Bereichen zusammenfügen und Bereiche ähnlicher Orientierungspräferenz meist nebeneinander liegen (siehe Abbildung). Die Anordnung der Neurone bestimmter Orientierungspräferenz bildet kein periodisches "Kachelmuster", sondern ist scheinbar chaotisch und unterscheidet sich von Gehirn zu Gehirn. Domänen, die einen kleinen Teil des Gesichtsfelds repräsentieren, enthalten jeweils Gruppen von Neuronen jeder Orientierungspräferenz. Damit das Gehirn ein Bild vollständig erfassen, zum Beispiel einen durchgängigen Strich als solchen erkennen kann, sind Neurone aus verschiedenen Bereichen des Kortex, die auf die gleiche Orientierung reagieren, miteinander verknüpft.

Die Muster der Orientierungspräferenz entstehen beim Menschen und anderen Säugetieren in den ersten Tagen nach der Geburt durch einen Selbstorganisationsprozess. Welche neuronale Kontakte neu entstehen und welche aufgelöst werden, hängt von den schon vorhandenen Kontakten ab. Selbstorganisationsprozesse sind in der Natur keine Seltenheit - allerdings ist die Entwicklung des visuellen Kortex ein Sonderfall unter diesen Prozessen. Die meisten Selbstorganisationprozesse sind physikalische Prozesse oder chemische Reaktionen, bei denen jedes Element nur mit seinem direkten Nachbarn reagiert. Das ist im visuellen Kortex anders. Neurone treten über weite Distanzen miteinander in Kontakt, damit - wie oben beschrieben - das Gehirn aus dem Aktivitätsmuster der Kortexneurone ein Bild erstellen kann. Nur unter Berücksichtigung dieser biologisch relevanten Tatsache ist es Wolf gelungen, ein mathematisches Modell zu entwickeln, das die Prozesse der Musterbildung im Gehirn realitätsnah nachbildet und in ein stabiles Gleichgewicht mündet.

Selbstorganisationsprozesse lassen sich - zumindest theoretisch - im Computer simulieren. Allerdings würde das für einen solch komplexen Prozess wie die dynamische Entwicklung des primären visuellen Kortex die Rechenkapazität jedes heutigen Computers sprengen. Um trotzdem zu einem mathematischen Modell zu kommen, benutzte Wolf Verfahren, das auf so genannten Symmetrieannahmen beruht. Wenn das mathematische Modell die Entstehung eines bestimmten Musters erlaubt - so lautete die Annahme - dann muss auch eine verschobene, gedrehte oder gespiegelte Version dieses Musters zulässig sein. Die Annahme ergibt sich zum Beispiel daraus, dass kein Ort innerhalb eines primären visuellen Kortexareals sich gegenüber einem anderen anatomisch auszeichnet. In der Theorie der Selbstorganisation entwickelte mathematische Methoden erlauben es, aus solchen Symmetrieannahmen Vorhersagen abzuleiten. Dadurch, dass Wolf diese Methoden für den visuellen Kortex nutzbar gemacht hat, wird es nun möglich, mit wesentlich weniger Rechenaufwand die Bildung neuronaler Muster quantitativ zu beschreiben - im Prinzip reichen Papier und Bleistift.

Das erste theoretische Modell, das die Selbstorganisation des Orientierungsmusters im visuellen Kortex simuliert, wurde im Jahre 1972 von Christoph von der Malsburg am Max-Planck-Institut für biophysikalische Chemie in Göttingen vorgeschlagen. Das Modell hat einen schwerwiegenden Nachteil - es lieferte ein streng periodisches Muster, hatte also hinsichtlich der räumlichen Anordnung der Neurone mit der Realität wenig zu tun. Auch nachfolgende Modelle, die in den vergangenen Jahren entwickelt wurden, brachten in dieser Hinsicht keine Verbesserung. Das Modell von Wolf ist das erste, das die Tatsache mit einbezieht, dass Neurone über längere Distanzen miteinander in Kontakt treten können und damit auch das erste, das realistische Muster vorhersagt, die nicht streng periodisch sind. Zusätzlich stellte sich bei den mathematischen Untersuchungen heraus, dass es in diesem Modell eine sehr große Zahl von möglichen Mustern gibt, deren Entstehung mit den gleichen mathematischen Gesetzen vereinbar sind. So lässt sich dann auch erklären, dass jedes Gehirn ein anderes Muster neuronaler Orientierungspräferenz hat, auch wenn die Gehirnentwicklung strengen mathematischen Regeln folgt.

Quelle:
Fred Wolf (2005). Symmetry, Multistability, and Long-Range Interactions in Brain Development. Phys. Rev. Lett. 95, 208701

Kontakt:
Dr. Fred Wolf
Max-Planck-Institut für Dynamik und Selbstorganisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
Tel: 0551 5176-423
Fax: 0551 5176-439
Email: fred@chaos.gwdg.de

Das Bernstein Center for Computational Neuroscience (BCCN) Göttingen ist ein vom BMBF gefördertes Verbundprojekt des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, der Georg-August-Universität Göttingen, dem Deutschen Primaten Zentrum und der Otto Bock HealthCare GmbH. In dem interdisziplinären Verbund werden experimentelle Untersuchungen am Nervensystem mit mathematischen Modellen und Computersimulationen vereint. Die Kombination von Theorie und Praxis trägt zu einem besseren Verständnis der Gehirnfunktionen bei und führt damit z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik.

Dr. Tobias Niemann | idw
Weitere Informationen:
http://www.ds.mpg.de/
http://www.bccn-goettingen.de
http://www.bernstein-centers.de

Weitere Berichte zu: Computational Kortex Neuron Neuroscience Orientierungspräferenz Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie