Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schnell trinkt die Tomate?

05.01.2006


Wissenschaftlern am Berliner Hahn-Meitner-Institut ist es erstmals gelungen, in deutlichen Bildern zu beobachten, wie schnell eine Pflanze Wasser aufnimmt. In einer Reihe von Aufnahmen, die einen Tomatensetzling zeigen, kann man genau verfolgen, wie das Wasser im Stiel aufsteigt.


Die drei Neutronenradiogramme zeigen aufsteigendes Wasser in einer Tomatenpflanze. Die Radiogramme entstehen auf ähnliche Weise wie Röntgenaufnahmen, wobei Neutronen im Gegensatz zu Röntgenstrahlen auch Wasserstoff deutlich zeigen. Der Wasserbehälter, in dem sich die Wurzel der Pflanze befindet, ist aus technischen Gründen nach oben hin abgedichtet worden.



Wissenschaftlern am Berliner Hahn-Meitner-Institut ist es erstmals gelungen, in deutlichen Bildern zu beobachten, wie schnell eine Pflanze Wasser aufnimmt. In einer Reihe von Aufnahmen, die einen Tomatensetzling zeigen, kann man genau verfolgen, wie das Wasser im Stiel aufsteigt. Dazu haben die Wissenschaftler dem Setzling ab einem bestimmten Zeitpunkt nur noch so genanntes schweres Wasser gegeben, das sich in den Bildern markant vom gewöhnlichen Wasser abhebt. Der Kontrast entsteht beim Durchleuchten der Pflanze mit Neutronen, die auf beide Wasserarten verschieden reagieren. Für die Pflanze ist es dabei fast bedeutungslos, mit welchem Wasser sie gegossen wird.



"Die Wasseraufnahme ist ein wichtiges Maß dafür, wie gut es einer Pflanze geht. Deswegen versuchen Pflanzenspezialisten seit langem den Wasserfluss im Pflanzenstiel zu beobachten; mit den bisherigen Verfahren konnte man ihn mit großer Genauigkeit aber nur für kleine Ausschnitte der Pflanze sichtbar machen. Jetzt haben wir ein Werkzeug, mit dem wir die ganze Pflanze scharf sehen und so das Wasser über längere Zeit verfolgen können. Damit können wir untersuchen, wie Pflanzen auf geänderte äußere Bedingungen wie zum Beispiel wechselnde Lichtverhältnisse reagieren. Die Ergebnisse könnten helfen, die Wachstumsbedingungen besser an die Bedürfnisse der Pflanzen anzupassen und so landwirtschaftliche Erträge zu steigern" erklärt Frau Dr. Uzuki Matsushima von der Landwirtschaftsfakultät der japanischen Iwate University, in deren Auftrag die Untersuchungen durchgeführt worden sind.

"In dem Experiment nutzen wir aus, dass Neutronen verschiedene Isotope desselben Elements unterscheiden können. So lässt sich das schwere Wasser gut vom ’normalen’ leichten Wasser abheben. Mit Röntgenstrahlen hätte man das Wasser überhaupt nicht sehen können" erläutert Dr. Nikolay Kardjilov, an dessen neuer Experimentieranlage im Hahn-Meitner-Institut die Untersuchungen durchgeführt wurden. "Hätte man das Experiment einfach mit gefärbtem Wasser durchgeführt, hätte sich der Farbstoff nicht genauso in der Pflanze ausgebreitet wie das Wasser. Das hätte die Ergebnisse verfälscht." fügt er hinzu.

Für die Untersuchungen wurde das Verfahren der Neutronenradiographie eingesetzt, mit der zweidimensionale Durchleuchtungsbilder verschiedener Objekte erzeugt werden können. Zusätzlich liefert die verwandte Neutronentomographie dreidimensionale Bilder. Gegenüber Röntgenstrahlen sind Neutronen vor allem dann im Vorteil, wenn es darum geht auch leichte Elemente wie Wasserstoff zu zeigen und Metalle gut zu durchdringen. Das Hahn-Meitner-Institut in Berlin unterhält eine von vier Neutronenquellen, die in Deutschland für Forschungszwecke betrieben werden. Für die beschriebenen Forschungsarbeiten werden Projektmittel von der Europäischen Union und vom Land Berlin bereitgestellt.

Das Hahn-Meitner-Institut wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Berlin finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren. Die Helmholtz-Gemeinschaft ist mit 15 Forschungszentren und 24 000 Mitarbeitern die größte Wissenschaftsorganisation Deutschlands.

Thomas Robertson | idw
Weitere Informationen:
http://www.hmi.de/

Weitere Berichte zu: Helmholtz-Gemeinschaft Neutron Pflanze Stiel Tomate

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics