Bahnbrechende Entdeckung zum DNA-Reparaturmechanismus

Biochemiker der Uniklinik Frankfurt am Main entdecken mit Ubiquitin ein entscheidendes Signalmolekül bei der Reparatur der DNA


In der aktuellen Ausgabe des amerikanischen Wissenschaftsmagazins Science (16.12.2005, Seiten 1821-1824) wird über eine erstaunliche Entdeckung berichtet, die einen entscheidenden Beitrag zum Verständnis der molekularen Grundlagen der DNA-Reparatur liefert. Wissenschaftler des Instituts für Biochemie II: Kardiovaskuläre Biochemie, am Klinikum der Johann Wolfgang Goethe-Universität in Frankfurt am Main haben zusammen mit in- und ausländischen Kollegen einen molekularen „Schalter“ gefunden, der die Reaktion der Zelle auf Schäden am Erbmolekül DNA bestimmt. Wenn die DNA beispielsweise durch ultraviolette Strahlung der Sonne beschädigt wird, so verhindert dies den ungestörten Ablauf der DNA-Replikation (Verdopplung). Um die beschädigte Stelle zu umgehen, muss die Zelle spezifische Enzyme aktivieren, die als Reparatur-Polymerasen (engl.: translesion polymerases) die DNA-Läsion erkennen und ausbessern können. Die Wissenschaftler konnten zeigen, dass die Fähigkeit dieser Polymerasen, ein kleines Molekül mit der Bezeichnung Ubiquitin zu binden, entscheidend ist, um an der beschädigten DNA-Stelle die Replikation fortzusetzen. Diese Ergebnisse liefern einen langgesuchten Hinweis darauf, wie diese Reparatur-Polymerasen einen Zugang zur beschädigten Stelle bekommen, während die üblichen Polymerasen die DNA nicht weiter replizieren.

„Dieser wichtige biochemische Schalter ist bei Patienten, die an einer Variante der UV-induzierten Hautkrankheit Xeroderma pigmentosum leiden, defekt, was zur Häufung von DNA-Schäden und schließlich zu Hautkrebs führt“, erklärt der Leiter dieser Studie, Professor Dr. Ivan Dikic vom Institut für Biochemie II des Universitätsklinikums Frankfurt.

„Durch unsere gemeinsame Studie haben wir neue und erstaunliche Einblicke in diejenigen Mechanismen bekommen, mit denen die Zelle auf die Beschädigung unseres Erbmaterials reagiert“, meint Koautor Professor Alan Lehmann, einer der Pioniere auf dem Gebiet der DNA-Reparatur und Vorsitzender des Genome Damage and Stability Centre an der Universität von Sussex in England.

Durch Kombination von experimentellen und bioinformatischen Methoden konnten die Wissenschaftler zwei neue Domänen (funktionelle Einheiten in Proteinen) identifizieren, die in Enzymen das Signalmolekül Ubiquitin binden: UBM und UBZ. Dr. Matthias Peter und seine Kollegen an der Eidgenössischen Technischen Hochschule (ETH) in Zürich kartierten mit Hilfe der Kernresonanzspektroskopie (nuclear magnetic resonance: NMR) die Oberfläche der UBM-Domäne, die Ubiquitin bindet.

Die Aufklärung des sogenannten Ubiquitin-Interaktoms, einem Netzwerk von Proteinen, die Ubiquitin-markierte Moleküle erkennen, ist die Grundlage für ein besseres Verständnis vieler zellulärer Funktionen. „Die Bestimmung spezifischer Ubiquitin bindender Protein-Domänen sowie ihrer Interaktionen innerhalb der Zelle stellen gegenwärtig die größten Herausforderungen auf dem Gebiet der Ubiquitin-Signaltransduktion dar“, meint ein Koautor, der Bioinformatiker Dr. Kay Hofmann von der Miltenyi Biotec GmbH in Köln.

Die Wissenschaftler waren überrascht, dass die neu gefundenen Ubiquitin bindenden Domänen in einer Vielzahl von Proteinen existieren, die für die zelluläre Signaltransduktion, die Immunreaktion sowie die Transkription und Replikation von DNA bedeutsam sind. „Dies zeigt eine umfassendere und eher generelle Bedeutung der Ubiquitin-Signaltransduktion bei der Regulation von Zellfunktionen und weist darauf hin, dass ihre Fehlregulation möglicherweise zur Entstehung von Krankheiten beiträgt. Ein detailliertes Verständnis dieser Prozesse kann dabei helfen, Therapien zu verbessern“, meint Professor Dr. Dikic.

Professor Dr. Werner Müller-Esterl, Direktor des Instituts für Biochemie II am Universitätsklinikum Frankfurt, unterstreicht, dass der Erfolg dieses Projekts mit dem internationalen und interdisziplinären Umfeld zusammenhängt, das hierfür geschaffen wurde: „Diese Ergebnisse stellen einen Meilenstein auf dem Weg zu einem besseren Verständnis jener Mechanismen dar, mit denen die Replikationsgenauigkeit abgesichert wird. Sie haben bedeutende Auswirkungen für die Entwicklung neuer Arzneimittel gegen Krankheiten des Menschen, die durch fehlerhafte DNA-Reparaturmechanismen verursacht werden“.

Für weitere Informationen:

Dipl.-Biol. Stefan Kieß
Presse- und Öffentlichkeitsarbeit
Institut für Biochemie II
Klinikum der J.W. Goethe-Universität Frankfurt/Main
Fon (06 9) 63 01 – 54 50
Fax (06 9) 63 01 – 55 77
E-Mail kiess@em.uni-frankfurt.de

Ricarda Wessinghage
Presse- und Öffentlichkeitsarbeit
Klinikum der J.W. Goethe-Universität Frankfurt/Main
Fon (0 69) 63 01 – 77 64
Fax (0 69) 63 01 – 8 32 22
E-Mail ricarda.wessinghage@kgu.de

Media Contact

Ricarda Wessinghage idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer