Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Forschern gelingt Durchbruch in der Pflanzen-Stammzellforschung

22.12.2005


Zwei Arabidopsis-Keimlinge. Im Vordergrund ein Wildtyp-Keimling mit funktionellem Meristem, dahinter ein Keimling mit einer Mutation im WUSCHEL-Gen, der daher nach den Keimblättern keine weiteren Organe anlegen kann. Im Hintergrund ist ein Detailausschnitt einer Microarray-Hybridisierung zu sehen. Bild: Max-Planck-Gesellschaft


Wissenschaftler des Tübinger Max-Planck-Instituts für Entwicklungsbiologie haben entschlüsselt, wie Pflanzen die Anzahl ihrer Stammzellen regulieren


Pflanzen verfügen dank totipotenter Stammzellen lebenslang über die Fähigkeit, ständig neue Organe zu bilden. Wie Hormone und genetische Faktoren zusammenwirken, damit Pflanzen weder verkümmern noch krebsartig wuchern, war jedoch unbekannt. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie haben jetzt einen Rückkopplungsmechanismus offen gelegt, über den ein wachstumsförderndes Hormon und ein regulatorisches Eiweiß in Pflanzen verbunden sind, um die Zahl an Stammzellen steuern (Nature, 22. Dezember 2005). Diese Erkenntnisse sind von grundsätzlicher Bedeutung für die gesamte Stammzellforschung.

Alle oberirdischen Teile einer Pflanze - Blätter, Blüten, Stängel, Samen - entspringen letztlich einem winzigen Gewebebereich an der Spitze des Sprosses. Diese von Biologen als Sprossmeristem bezeichnete Region enthält totipotente Stammzellen, die während der gesamten Lebenszeit einer Pflanze aktiv bleiben. Im Gegensatz zu Tieren, die nach dem Abschluss der Embryonalentwicklung nur noch über gewebespezifische Stammzellen verfügen, können Pflanzen daher über viele Jahre hinweg weiter wachsen und neue Organe ausbilden.


Diese Fähigkeit birgt jedoch zugleich auch Gefahren: Steigt die Zahl der meristematischen Stammzellen zu schnell an, drohen krebsähnliche Wucherungen. Schrumpft der Stammzellpool dagegen stark, dann verkümmert die Pflanze. Um lebensfähig zu bleiben und die eigene Fortpflanzung zu sichern, muss die Pflanze daher die Zahl ihrer Stammzellen genau ausbalancieren. Wie man heute weiß, geschieht dies über zwei Regelwerke: zum einen über wachstumsfördernde Pflanzenhormone wie Auxin und Cytokinin, die bereits seit mehr als fünfzig Jahren bekannt sind. Auf der anderen Seite wirken auch genetische Faktoren an der Stammzellregulation mit. Vor rund zehn Jahren wurde - ebenfalls in Tübingen - ein mit dem Namen "Wuschel" belegtes, zentrales Steuerungsgen entdeckt, das entscheidenden Einfluss darauf hat, wie viele Zellen als Stammzellen im Sprossmeristem verbleiben. Rätselhaft war bislang jedoch, auf welche Weise Hormone und Gene zusammenarbeiten, um die feine Balance in der Sprossspitze aufrechtzuerhalten.

Dieses Rätsel hat die von Dr. Jan Lohmann geleitete Arbeitsgruppe am Tübinger Max-Planck-Institut für Entwicklungsbiologie nun gelüftet. Als Untersuchungsobjekt diente ihnen die "Hauspflanze" der botanischen Forschung, die Ackerschmalwand Arabidopsis thaliana, deren Erbgut bereits vor einigen Jahren vollständig entziffert wurde. Mithilfe aufwändiger genetischer und biochemischer Experimente haben Lohmann und sein Team nun vier Gene identifiziert, die als mechanistische Verbindung zwischen den Pflanzenhormonen und den genetischen Steuerungselementen im Meristem gelten können.

Wie die Genexpressionsanalysen der Tübinger Forscher zeigen, unterliegen die zu den Arabidopsis Response Regulatoren (ARR) zählenden Erbanlagen ARR5, ARR6, ARR7 und ARR15 der genetischen Steuerung durch das Wuschel-Gen. Unter seinem Einfluss wird besonders die Aktivität von ARR7 im Sprossmeristem deutlich gedrosselt. Die aktuelle Studie belegt damit, dass die ARR-Gene direkt an der genetischen Regulation des Stammzellpools beteiligt sind. Zugleich erfüllen sie jedoch auch eine wichtige Aufgabe im hormonellen Regelwerk: Sie sind Teil einer negativen Rückkopplungsschleife, mit der das wachstumsfördernde Pflanzenhormon Cytokinin seine eigene Wirkung begrenzt.

Das Hormon selbst regt die meristematischen Stammzellen zur Teilung an; gleichzeitig aktiviert es jedoch verschiedene ARR-Gene, die ihrerseits die Cytokinin-Signalkette unterbrechen. "Wuschel unterstützt den Cytokinin-Effekt, indem es dessen negative Rückkopplung unterbindet", erläutert Jan Lohmann. So erkläre sich auch die frühere Beobachtung, dass Arabidopsis-Exemplare mit defektem Wuschel-Gen nur sehr kleine Meristeme ausbilden und in ihrem Wachstum gestört sind. Den gleichen Effekt fanden die Tübinger Forscher nun auch bei Mutanten, deren ARR7-Gen überaktiv war.

Cytokinin kann seine volle wachstumsfördernde Wirkung demnach nur in Geweben entfalten, in denen das Wuschel-Steuerungsgen aktiv ist. "Die meristematische Regulation ist ein hervorragendes Beispiel dafür, wie die Wirkung von frei zirkulierenden Hormonen auf bestimmte Gewebe begrenzt werden kann", schwärmt Lohmann. Erst über solche Mechanismen werde es möglich, dass ein und dasselbe Hormon in verschiedenen Geweben unterschiedliche Wirkungen entfaltet - je nachdem, auf welche genetischen Voraussetzungen es dort trifft.

Weitere Informationen erhalten Sie von:

Dr. Jan Lohmann
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: 07071 601-1405 und -1413
Fax: 07071 601-1412
E-Mail: jan.lohmann@tuebingen.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Entwicklungsbiologie Hormon Pflanze Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten