Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Forschern gelingt Durchbruch in der Pflanzen-Stammzellforschung

22.12.2005


Zwei Arabidopsis-Keimlinge. Im Vordergrund ein Wildtyp-Keimling mit funktionellem Meristem, dahinter ein Keimling mit einer Mutation im WUSCHEL-Gen, der daher nach den Keimblättern keine weiteren Organe anlegen kann. Im Hintergrund ist ein Detailausschnitt einer Microarray-Hybridisierung zu sehen. Bild: Max-Planck-Gesellschaft


Wissenschaftler des Tübinger Max-Planck-Instituts für Entwicklungsbiologie haben entschlüsselt, wie Pflanzen die Anzahl ihrer Stammzellen regulieren


Pflanzen verfügen dank totipotenter Stammzellen lebenslang über die Fähigkeit, ständig neue Organe zu bilden. Wie Hormone und genetische Faktoren zusammenwirken, damit Pflanzen weder verkümmern noch krebsartig wuchern, war jedoch unbekannt. Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie haben jetzt einen Rückkopplungsmechanismus offen gelegt, über den ein wachstumsförderndes Hormon und ein regulatorisches Eiweiß in Pflanzen verbunden sind, um die Zahl an Stammzellen steuern (Nature, 22. Dezember 2005). Diese Erkenntnisse sind von grundsätzlicher Bedeutung für die gesamte Stammzellforschung.

Alle oberirdischen Teile einer Pflanze - Blätter, Blüten, Stängel, Samen - entspringen letztlich einem winzigen Gewebebereich an der Spitze des Sprosses. Diese von Biologen als Sprossmeristem bezeichnete Region enthält totipotente Stammzellen, die während der gesamten Lebenszeit einer Pflanze aktiv bleiben. Im Gegensatz zu Tieren, die nach dem Abschluss der Embryonalentwicklung nur noch über gewebespezifische Stammzellen verfügen, können Pflanzen daher über viele Jahre hinweg weiter wachsen und neue Organe ausbilden.


Diese Fähigkeit birgt jedoch zugleich auch Gefahren: Steigt die Zahl der meristematischen Stammzellen zu schnell an, drohen krebsähnliche Wucherungen. Schrumpft der Stammzellpool dagegen stark, dann verkümmert die Pflanze. Um lebensfähig zu bleiben und die eigene Fortpflanzung zu sichern, muss die Pflanze daher die Zahl ihrer Stammzellen genau ausbalancieren. Wie man heute weiß, geschieht dies über zwei Regelwerke: zum einen über wachstumsfördernde Pflanzenhormone wie Auxin und Cytokinin, die bereits seit mehr als fünfzig Jahren bekannt sind. Auf der anderen Seite wirken auch genetische Faktoren an der Stammzellregulation mit. Vor rund zehn Jahren wurde - ebenfalls in Tübingen - ein mit dem Namen "Wuschel" belegtes, zentrales Steuerungsgen entdeckt, das entscheidenden Einfluss darauf hat, wie viele Zellen als Stammzellen im Sprossmeristem verbleiben. Rätselhaft war bislang jedoch, auf welche Weise Hormone und Gene zusammenarbeiten, um die feine Balance in der Sprossspitze aufrechtzuerhalten.

Dieses Rätsel hat die von Dr. Jan Lohmann geleitete Arbeitsgruppe am Tübinger Max-Planck-Institut für Entwicklungsbiologie nun gelüftet. Als Untersuchungsobjekt diente ihnen die "Hauspflanze" der botanischen Forschung, die Ackerschmalwand Arabidopsis thaliana, deren Erbgut bereits vor einigen Jahren vollständig entziffert wurde. Mithilfe aufwändiger genetischer und biochemischer Experimente haben Lohmann und sein Team nun vier Gene identifiziert, die als mechanistische Verbindung zwischen den Pflanzenhormonen und den genetischen Steuerungselementen im Meristem gelten können.

Wie die Genexpressionsanalysen der Tübinger Forscher zeigen, unterliegen die zu den Arabidopsis Response Regulatoren (ARR) zählenden Erbanlagen ARR5, ARR6, ARR7 und ARR15 der genetischen Steuerung durch das Wuschel-Gen. Unter seinem Einfluss wird besonders die Aktivität von ARR7 im Sprossmeristem deutlich gedrosselt. Die aktuelle Studie belegt damit, dass die ARR-Gene direkt an der genetischen Regulation des Stammzellpools beteiligt sind. Zugleich erfüllen sie jedoch auch eine wichtige Aufgabe im hormonellen Regelwerk: Sie sind Teil einer negativen Rückkopplungsschleife, mit der das wachstumsfördernde Pflanzenhormon Cytokinin seine eigene Wirkung begrenzt.

Das Hormon selbst regt die meristematischen Stammzellen zur Teilung an; gleichzeitig aktiviert es jedoch verschiedene ARR-Gene, die ihrerseits die Cytokinin-Signalkette unterbrechen. "Wuschel unterstützt den Cytokinin-Effekt, indem es dessen negative Rückkopplung unterbindet", erläutert Jan Lohmann. So erkläre sich auch die frühere Beobachtung, dass Arabidopsis-Exemplare mit defektem Wuschel-Gen nur sehr kleine Meristeme ausbilden und in ihrem Wachstum gestört sind. Den gleichen Effekt fanden die Tübinger Forscher nun auch bei Mutanten, deren ARR7-Gen überaktiv war.

Cytokinin kann seine volle wachstumsfördernde Wirkung demnach nur in Geweben entfalten, in denen das Wuschel-Steuerungsgen aktiv ist. "Die meristematische Regulation ist ein hervorragendes Beispiel dafür, wie die Wirkung von frei zirkulierenden Hormonen auf bestimmte Gewebe begrenzt werden kann", schwärmt Lohmann. Erst über solche Mechanismen werde es möglich, dass ein und dasselbe Hormon in verschiedenen Geweben unterschiedliche Wirkungen entfaltet - je nachdem, auf welche genetischen Voraussetzungen es dort trifft.

Weitere Informationen erhalten Sie von:

Dr. Jan Lohmann
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: 07071 601-1405 und -1413
Fax: 07071 601-1412
E-Mail: jan.lohmann@tuebingen.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Entwicklungsbiologie Hormon Pflanze Stammzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten