Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Computergesteuerte Chemie

09.10.2001


Erstmalig direkte Kopplung zwischen Computer und einer chemischen Reaktion / Berliner Fritz-Haber-Institut gelingt raum-zeitliche Steuerung katalytischer Aktivität


Das Verständnis spontaner Strukturbildung, wie sie in vielen natürlichen und technischen Systemen auftritt, ist bisher nur elementar. Jetzt ist es Wissenschaftlern des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft und der Princeton University erstmals gelungen, lokal, direkt und sehr schnell in eine strukturbildende chemische Reaktion einzugreifen (Science, 5. Oktober 2001). Mit Hilfe eines fokussierten Lasers konnten sie bestimmte Reaktionsmuster beliebig erzeugen, formen, beschleunigen und leiten. Über eine computergestützte Bildverarbeitung wird eine direkte raum-zeitliche Steuerung chaotisch ablaufender chemischer Reaktionen möglich.

Strukturbildung durch Selbstorganisation tritt in der Natur in vielen Formen auf, von der Bildung von Strudeln in Flüssigkeiten über Wirbelstürme bis hin zur Spiralbildung in Galaxien oder zu Mustern, die bei chemischen Reaktionen in so genannten Reaktions-Diffusions-Systemen entstehen. Solche Muster treten in chemischen Systemen dann auf, wenn diese sich fern des Gleichgewichts befinden. Das wird dadurch erreicht, dass der Reaktion ständig Reaktionsprodukte entnommen und Ausgangsstoffe zugeführt werden.


Wissenschaftlern am Fritz-Haber-Institut ist es nun gelungen, eine solche chemische Strukturbildung bei der katalytischen Oxidation von Kohlenmonoxid gezielt zu beeinflussen. In der betrachteten Reaktion haften Sauerstoff und Kohlenmonoxid (CO) zunächst auf einer katalytischen Platin-Einkristalloberfläche. Die auf der Oberfläche beweglichen CO-Moleküle reagieren jeweils mit einem Sauerstoffatom zu Kohlendioxid, das die Oberfläche sogleich wieder verlässt. Bei dieser Reaktion bilden sich selbstorganisierte Muster aus mikroskopisch kleinen dunklen und hellen Bereichen, die jeweils entweder von Sauerstoff oder von Kohlenmonoxid bedeckt sind.

Um diese Muster lokal zu beeinflussen, haben die Forscher in der von Professor Gerhard Ertl geleiteten Abteilung zusammen mit Professor Ioannis G. Kevrekidis von der Princeton University eine Apparatur gebaut, mit deren Hilfe das Licht eines Lasers auf einen beliebigen Punkt der Platinoberfläche fokussiert werden kann. Dieser Punkt wird dadurch (kurzzeitig) wärmer als seine Umgebung, so dass sich auch die Bedingungen für die Musterbildung an dieser Stelle verändern. Der Brennpunkt des Lasers kann mit zwei computerkontrollierten Spiegeln beliebig auf der Oberfläche hin und her bewegt werden - und damit in die chemische Reaktion hinein "schreiben".

Dieses "Schreiben" in eine chemische Oberflächenreaktion hat verschiedene Auswirkungen: Es können neue Muster erzeugt werden, die in diesem Fall an eine Bugwelle eines fahrenden Schiffes erinnern. Bestehende Muster können gelöscht werden (siehe Abbildung 1, A + B). Bereits entstandenen Mustern kann ihre Ausbreitungsrichtung vorgegeben, andere Richtungen können blockiert werden (Abbildung 1 C).



Abb. 1: A) Erzeugung eines neuen Musters, das an die Bugwelle eines Schiffes erinnert. Der Laserstrahl, der das Platin lokal kurzzeitig erwärmt, wird dazu im schrägen Winkel langsam über die Probe bewegt. B) Der mit einer Computermaus gesteuerte Laserstrahl "löscht" eine Kohlenmonoxid-Front. C) Eine CO-Front wird innerhalb eines Kreisringes festgehalten.
Foto: Fritz-Haber-Institut



Mit einem computergestützten Bildverarbeitungssystem gelang es den Max-Planck-Wissenschaftlern durch Rückkopplung, dieses Reaktionssystem zu einem völlig neuen Verhalten zu zwingen. Während die Reaktion zwischen Kohlenmonoxid und Sauerstoff homogen zwischen den Kohlenmonoxid-bedeckten und Sauerstoff-bedeckten Zuständen oszillierte, wurde der Laserstrahl auf der Katalysatoroberfläche in schneller Abfolge auf die vier Ecken eines Quadrates fokussiert. Verblieb der Laser gleich lang an jedem Eckpunkt (keine Rückkopplung), blieben die Oszillationen weiterhin regelmäßig. Wird nun die Helligkeit der Reaktion in vier beliebig gewählten Bereichen gleichzeitig gemessen und mathematisch mit der konkreten Verweildauer des Lasers auf jedem Quadrateckpunkt verknüpft, so entstehen vollständig andere Muster (Abbildung 2).

Abb. 2: A) Der Laserstrahl wird in schneller Abfolge auf die vier Punkte 1 bis 4 gerichtet. Die Zeit, die er an jedem Punkt verbringt, richtet sich nach der mittleren gemessenen Helligkeit in den vier markierten Gebieten. Die zeitliche Entwicklung der Reaktion kann mit einem sogenannten x-t-Plot dargestellt werden. Dabei werden die Graustufen entlang einer Linie für aufeinanderfolgende Videobilder nebeneinander aufgezeichnet. B) X-t-Plot entlang der Linie ab, wenn der Laser gleich lang an jedem Eckpunkt bleibt. Es ist ein deutlich regelmäßiges Muster zu erkennen. C) X-t-Plot entlang der Linie ab, wenn der Laser nicht mehr gleich lang an jedem Eckpunkt verweilt (vgl. Text). Das vorher regelmäßige Muster ist nun unregelmäßig.
Foto: Fritz-Haber-Institut



Am Beispiel dieser relativ einfachen Reaktion zwischen Kohlenmonoxid und Sauerstoff haben die Forscher gezeigt, dass es möglich ist, eine chemische Reaktion direkt mit einem Computer zu koppeln und zu steuern. Diese Rückkopplung in die chemische Reaktion wirkt schnell und direkt. Sie kann an mehreren Stellen erfolgen und ist nicht an die Positionen gebunden, an denen die einzelnen Messungen (in diesem Fall der Helligkeit) durchgeführt werden.

Damit werden sogenannte "Hybrid-Systeme" möglich, in denen ein auf dem Computer laufendes Programm über eine Schnittstelle mit einer chemischen Reaktion gekoppelt wird. Die Schnittstelle in die eine Richtung ist der Laser, in die andere Richtung das bildgebende Verfahren. Damit öffnen sich völlig neue Wege, um chemische Prozesse zu kontrollieren bzw. auf bestimmte Ziele hin zu optimieren, wie z.B. der Erhöhung der Reaktionsrate oder der Selektivität für ein bestimmtes Produkt.

Weitere Auskünfte erhalten Sie von:

Dr. Harm Hinrich Rotermund
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Abteilung Physikalische Chemie
Tel.: 0 30 / 84 13 - 51 29
Fax: 0 30 / 84 13 - 51 06
E-Mail: a href=mailto:rotermund@fhi-berlin.mpg.de>rotermund@fhi-berlin.mpg.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://w3.rz-berlin.mpg.de/~rotermun/science/
http://www.fhi-berlin.mpg.de/
http://w3.rz-berlin.mpg.de/pc/

Weitere Berichte zu: Abbildung Eckpunkt Helligkeit Kohlenmonoxid Laser Laserstrahl Rückkopplung Sauerstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schneller Energietransport zwischen ungleichen Partnern
29.09.2016 | Julius-Maximilians-Universität Würzburg

nachricht Das Ribosom als Kontrolleur
29.09.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Im Focus: Forscher entwickeln quantenphotonischen Schaltkreis mit elektrischer Lichtquelle

Optische Quantenrechner könnten die Computertechnologie revolutionieren. Forschern um Wolfram Pernice von der Westfälischen Wilhelms-Universität Münster sowie Ralph Krupke, Manfred Kappes und Carsten Rockstuhl vom Karlsruher Institut für Technologie ist es nun gelungen, einen quantenoptischen Versuchsaufbau auf einem Chip zu platzieren. Damit haben sie eine Voraussetzung erfüllt, um photonische Schaltkreise für optische Quantencomputer nutzbar machen zu können.

Ob für eine abhörsichere Datenverschlüsselung, die ultraschnelle Berechnung riesiger Datenmengen oder die sogenannte Quantensimulation, mit der hochkomplexe...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

EEHE 2017 – Strom statt Benzin. Experten diskutieren die Umsetzung neuester Fahrzeugkonzepte. Call vor Papers endet am 31.10.2016!

28.09.2016 | Veranstaltungen

Folgenschwere Luftverschmutzung: Forum zur Chemie der Atmosphäre

28.09.2016 | Veranstaltungen

European Health Forum Gastein 2016 beginnt

28.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA entdeckt stellaren Kokon mit seltsamer chemischer Zusammensetzung

29.09.2016 | Physik Astronomie

Korrelierte Magnete aus einzelnen Atomen

29.09.2016 | Physik Astronomie

Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

29.09.2016 | Physik Astronomie