Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vitale Zellstrukturen halten Einzug in die Medizintechnik

16.12.2005


"Biologisierung" elektro-mechanischer Systeme macht Implantate widerstandsfähiger"



In der Medizintechnik der nächsten Jahre sehe ich drei herausragende Trends: die weitere Miniaturisierung, die verstärkte Computerisierung und die zunehmende Biologisierung." Für Univ.-Prof. Dr. Thomas Schmitz-Rode erhält die Biomedizinische Technik im Rahmen der zukünftigen Gesundheitswirtschaft eine entscheidende Schrittmacherfunktion. "Deutschland hält auf diesem Gebiet mit rund 14 Milliarden Jahresumsatz nach den USA eine weltweite Spitzenposition. Diese Marktführerschaft gilt es auszubauen", so der Direktor des Helmholtz-Instituts für Biomedizinische Technik der RWTH Aachen.



Die Voraussetzungen und das Potential dazu sieht der gelernte Ingenieur und Mediziner an der Technischen Hochschule Aachen gegeben: Wie kaum an einem anderen europäischen Standort arbeiten hier seit Jahrzehnten Ärzte und Techniker intensiv zusammen. Derzeit arbeiten allein 7 Professoren und 100 Wissenschaftliche Mitarbeiter in diesem Bereich. Die erfolgreiche Entwicklung und Erprobung von Kunstherzen und Blutpumpen belegt diese innovative fachübergreifende Zusammenarbeit.

"Nach der Informatik und den Materialwissenschaften stößt neuerdings die Zell- und Molekularbiologie zur Medizintechnik hinzu", erläutert Prof. Schmitz-Rode, "die technische Komponente wird nunmehr durch eine biologische ergänzt". So richtet der junge Lehrstuhlinhaber für Angewandte Medizintechnik gerade eine neue Arbeitsgruppe für kardiovaskuläres Tissue Engeneering ein. Die technischen Systeme werden dabei noch stärker mit den biologischen verzahnt. Prof. Schmitz-Rode: "Aus der Verbindung von materialwissenschaftlichen und mechatronischen Komponenten mit Molekül- und Zellstrukturen entwickeln wir Hybridfunktionen, die konkrete Hilfestellung für den Patienten bringen."

Beispielprojekte des neuen Arbeitsgruppenleiters Dr. med. Stefan Jockenhövel sind mitwachsende Herzklappen für Kinder, gezüchtete Gefäßsegmente aus körpereigenem Material und sogenannte Myokard-Patches - Gewebe-Pflaster, die infarktgeschädigte Herzmuskelbereiche ersetzen sollen. "Das Zellmaterial wird dafür auf einen biokompatiblen Träger aufgetragen", schildert Schmitz-Rode. So können beispielsweise Herzklappen aus Elastomeren mit einer körpereigenen Zellschicht belegt werden. Ein damit verbundenes Ziel ist die Reduktion gerinnungshemmender Medikamente auf ein Mindestmaß. "Für einen Arterienersatz bei Bypass-Operationen konditionieren wir körpereigenes Material im Bioreaktor unter pulsierender Belastung", beschreibt Professor Schmitz-Rode einen anderen Einsatz. So kann es sich schrittweise an die spätere Belastungen im Körper anpassen. Insgesamt ist Schmitz-Rode überzeugt, dass durch diese Einführung vitaler Zell- und Molekularstrukturen in die Medizintechnik Implantate widerstandsfähiger und langlebiger werden. Von der engen Verzahnung und Interaktion der "klassischen" kardiovaskulären Technik (Arbeitsgruppenleiter Dr.-Ing. Ulrich Steinseifer) mit der Tissue-Engineering-Gruppe von Dr. Jockenhövel verspricht sich Schmitz-Rode innovative Impulse, die zur Entwicklungen neuer biohybrider Systeme führen werden.

Der Medizintechniker warnt jedoch vor zu großen Erwartungen: " Die Forschungs- und Entwicklungszeiträume liegen bei fünf bis zehn Jahren." In dieser Zeit gibt es viele Fragen zu beantworten: Wie verhält sich das Oberflächenmaterial bei längerfristigem Einsatz in der Körperumgebung? Wie muss das Design der Implantate verbessert werden? Wie müssen die Strömungseigenschaften optimiert werden, damit die Systeme blutschonender werden?

Diese Probleme geht das Helmholtz-Institut konsequent unter Einbeziehung anderer Fachdisziplinen und der Industrie an. Schmitz-Rode: "Unser Ziel ist eine schlagkräftigere Umsetzung von Ergebnissen aus der Grundlagenforschung über die Produktentwicklung bis hin zur experimentellen Erprobung." Und dazu werden auch die Kompetenzen der Hochschule in benachbarten Fachgebieten noch zielgerichteter einbezogen - etwa in der Zusammenarbeit innerhalb der Arbeitsgemeinschaft Helmholtz-Institut mit Professu-ren aus Maschinenbau, Elektrotechnik, Biologie und Medizin sowie auch mit dem benachbarten Deutschen Wollforschungsinstitut. "In dieser strategischen Allianz werden wir auch die internationale Sichtbarkeit dieses Aachener Exzellenz-Clusters weiter steigern," ist der Medizintechniker überzeugt.

Weitere Informationen erhalten Sie unmittelbar bei Univ.-Prof. Dr. med. Dipl.-Ing. Thomas Schmitz-Rode, Inhaber des Lehrstuhls für Angewandte Medizintechnik im Helmholtz-Institut für Biomedizinische Technik der RWTH Aachen, Pauwelsstraße 20, 52074 Aachen, Telefon 0241/80-87111, Fax 0241/80-82026, e-mail smiro@hia.rwth-aachen.de. Toni Wimmer

Dr. Christof Zierath | idw
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Berichte zu: Helmholtz-Institut Implantat Medizintechnik Zellstruktur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten