Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vitale Zellstrukturen halten Einzug in die Medizintechnik

16.12.2005


"Biologisierung" elektro-mechanischer Systeme macht Implantate widerstandsfähiger"



In der Medizintechnik der nächsten Jahre sehe ich drei herausragende Trends: die weitere Miniaturisierung, die verstärkte Computerisierung und die zunehmende Biologisierung." Für Univ.-Prof. Dr. Thomas Schmitz-Rode erhält die Biomedizinische Technik im Rahmen der zukünftigen Gesundheitswirtschaft eine entscheidende Schrittmacherfunktion. "Deutschland hält auf diesem Gebiet mit rund 14 Milliarden Jahresumsatz nach den USA eine weltweite Spitzenposition. Diese Marktführerschaft gilt es auszubauen", so der Direktor des Helmholtz-Instituts für Biomedizinische Technik der RWTH Aachen.



Die Voraussetzungen und das Potential dazu sieht der gelernte Ingenieur und Mediziner an der Technischen Hochschule Aachen gegeben: Wie kaum an einem anderen europäischen Standort arbeiten hier seit Jahrzehnten Ärzte und Techniker intensiv zusammen. Derzeit arbeiten allein 7 Professoren und 100 Wissenschaftliche Mitarbeiter in diesem Bereich. Die erfolgreiche Entwicklung und Erprobung von Kunstherzen und Blutpumpen belegt diese innovative fachübergreifende Zusammenarbeit.

"Nach der Informatik und den Materialwissenschaften stößt neuerdings die Zell- und Molekularbiologie zur Medizintechnik hinzu", erläutert Prof. Schmitz-Rode, "die technische Komponente wird nunmehr durch eine biologische ergänzt". So richtet der junge Lehrstuhlinhaber für Angewandte Medizintechnik gerade eine neue Arbeitsgruppe für kardiovaskuläres Tissue Engeneering ein. Die technischen Systeme werden dabei noch stärker mit den biologischen verzahnt. Prof. Schmitz-Rode: "Aus der Verbindung von materialwissenschaftlichen und mechatronischen Komponenten mit Molekül- und Zellstrukturen entwickeln wir Hybridfunktionen, die konkrete Hilfestellung für den Patienten bringen."

Beispielprojekte des neuen Arbeitsgruppenleiters Dr. med. Stefan Jockenhövel sind mitwachsende Herzklappen für Kinder, gezüchtete Gefäßsegmente aus körpereigenem Material und sogenannte Myokard-Patches - Gewebe-Pflaster, die infarktgeschädigte Herzmuskelbereiche ersetzen sollen. "Das Zellmaterial wird dafür auf einen biokompatiblen Träger aufgetragen", schildert Schmitz-Rode. So können beispielsweise Herzklappen aus Elastomeren mit einer körpereigenen Zellschicht belegt werden. Ein damit verbundenes Ziel ist die Reduktion gerinnungshemmender Medikamente auf ein Mindestmaß. "Für einen Arterienersatz bei Bypass-Operationen konditionieren wir körpereigenes Material im Bioreaktor unter pulsierender Belastung", beschreibt Professor Schmitz-Rode einen anderen Einsatz. So kann es sich schrittweise an die spätere Belastungen im Körper anpassen. Insgesamt ist Schmitz-Rode überzeugt, dass durch diese Einführung vitaler Zell- und Molekularstrukturen in die Medizintechnik Implantate widerstandsfähiger und langlebiger werden. Von der engen Verzahnung und Interaktion der "klassischen" kardiovaskulären Technik (Arbeitsgruppenleiter Dr.-Ing. Ulrich Steinseifer) mit der Tissue-Engineering-Gruppe von Dr. Jockenhövel verspricht sich Schmitz-Rode innovative Impulse, die zur Entwicklungen neuer biohybrider Systeme führen werden.

Der Medizintechniker warnt jedoch vor zu großen Erwartungen: " Die Forschungs- und Entwicklungszeiträume liegen bei fünf bis zehn Jahren." In dieser Zeit gibt es viele Fragen zu beantworten: Wie verhält sich das Oberflächenmaterial bei längerfristigem Einsatz in der Körperumgebung? Wie muss das Design der Implantate verbessert werden? Wie müssen die Strömungseigenschaften optimiert werden, damit die Systeme blutschonender werden?

Diese Probleme geht das Helmholtz-Institut konsequent unter Einbeziehung anderer Fachdisziplinen und der Industrie an. Schmitz-Rode: "Unser Ziel ist eine schlagkräftigere Umsetzung von Ergebnissen aus der Grundlagenforschung über die Produktentwicklung bis hin zur experimentellen Erprobung." Und dazu werden auch die Kompetenzen der Hochschule in benachbarten Fachgebieten noch zielgerichteter einbezogen - etwa in der Zusammenarbeit innerhalb der Arbeitsgemeinschaft Helmholtz-Institut mit Professu-ren aus Maschinenbau, Elektrotechnik, Biologie und Medizin sowie auch mit dem benachbarten Deutschen Wollforschungsinstitut. "In dieser strategischen Allianz werden wir auch die internationale Sichtbarkeit dieses Aachener Exzellenz-Clusters weiter steigern," ist der Medizintechniker überzeugt.

Weitere Informationen erhalten Sie unmittelbar bei Univ.-Prof. Dr. med. Dipl.-Ing. Thomas Schmitz-Rode, Inhaber des Lehrstuhls für Angewandte Medizintechnik im Helmholtz-Institut für Biomedizinische Technik der RWTH Aachen, Pauwelsstraße 20, 52074 Aachen, Telefon 0241/80-87111, Fax 0241/80-82026, e-mail smiro@hia.rwth-aachen.de. Toni Wimmer

Dr. Christof Zierath | idw
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Berichte zu: Helmholtz-Institut Implantat Medizintechnik Zellstruktur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie