Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur des Photosystems II bei 3 Angström aufgelöst.

15.12.2005


Wissenschaftler publizieren verfeinerte Strukturdaten des Protein-Cofaktor-Komplexes Photosystem II in "Nature" am 15.12.2005


Das jetzige Leben auf der Erde wurde nur möglich, weil vor 3,5 Milliarden Jahren Cyanobakterien mit der Photosynthese begannen, einem der wichtigsten biologischen Energie-Umwandlungsprozesse, der später von grünen Algen und höheren Pflanzen übernommen wurde. Bei der Photosynthese fängt das grüne Pigment Chlorophyll Sonnenlicht ein, dessen Energie benutzt wird, um Wasser oxidativ in lebensnotwendigen Sauerstoff zu spalten (Lichtreaktion). Die dabei freigesetzten Wasserstoff-Ionen und Elektronen wandeln in einem weiteren Schritt Kohlendioxid aus der Luft in Kohlenhydrate um (Dunkelreaktion), die Grundlage aller Nahrung sind.

Diese beiden gekoppelten Prozesse werden in der Thykaloidmembran der Zellen von zwei großen Protein-Cofaktor-Komplexen bewerkstelligt. Die Struktur des für die Sauerstoffentwicklung zuständigen Photosystems II (PS II) wurde jetzt mit einer Auflösung von drei Angström* von Prof. Dr. Wolfram Saenger am Institut für Chemie und Biochemie der Freien Universität Berlin gemeinsam mit Kollegen vom Max-Volmer-Laboratorium der TU Berlin am Donnerstag, dem 15. Dezember 2005, in der renommierten Fachzeitschrift "Nature" publiziert.


Wolfram Saenger ist Spezialist für die Röntgen-Kristallstrukturanalyse großer Biomoleküle an der Freien Universität Berlin. Seit etwa zwanzig Jahren erforscht er die Photosynthese in Zusammenarbeit mit Kollegen der Technischen Universität Berlin (früher Prof. Horst Tobias Witt, jetzt Dr. Athina Zouni). Gegenüber der erstmals 2001 von der Freien Universität Berlin und der TU veröffentlichten Struktur des PS II - damals mit einer Auflösung von 3,8 Angström - eröffnen die neuen Daten wesentlich detailliertere Einblicke in den großen Protein-Cofaktor-Komplex, der aus dem Cyanobakterium Thermosynechococcus elongatus isoliert wird und als Dimer vorliegt.

In großer Klarheit zeigen sich nun die dreidimensionalen Strukturen von je zwanzig Protein-Untereinheiten (pro Monomer), 35 Chlorophyll-a Molekülen, elf Carotinen, je zwei Pheophytinen, Plastochinonen und Haemgruppen, 14 Lipiden, je einem Bicarbonat- und Eisen(II)-Ion, drei Detergenzmolekülen und des einzigartigen, aus vier Mangan-Ionen und einem Calcium-Ion bestehenden Clusters, an dem das Wasser letztlich oxidiert wird.

Die Zuordnung der Carotine gewährt neue Einblicke in den Elektronen- und Energietransfer im Reaktionszentrum und in den Licht sammelnden Antennen-Untereinheiten. Die 14 integral-gebundenen Lipide waren bis dato nicht erkennbar. Ihre hohe Zahl und ihre Positionen sprechen dafür, dass sie eine wichtige Funktion für Flexibilität und Architektur des PS II ausüben.

Aus Position, Geometrie und Koordination der Metall-Ionen im Mangan-Calcium-Cluster erhoffen sich Physiker und Chemiker entscheidende Informationen zum Verständnis des Mechanismus der Wasseroxidation. Um Wasser zu Sauerstoff zu oxidieren, bedarf es des höchsten elektrischen Potentials, das je in einem Organismus gefunden wurde: 1,2 Volt. Je mehr Details sichtbar werden, desto klarer wird: Hinter der allgemein bekannten, scheinbar simplen chemischen Gleichung der Photosynthese verbergen sich Dutzende Einzelreaktionen, viele winzige chemische Klimmzüge, mit denen Bakterien, grüne Algen und Pflanzen diesen gewaltigen Prozess bewerkstelligen.

Athina Zouni und Jan Kern vom Max-Volmer-Laboratorium der TU Berlin präparierten, reinigten und kristallisierten den Protein-Cofaktor-Komplex des Photosystems II. Die Struktur wurde anhand von Röntgen-Beugungsdaten von Bernhard Loll, Jacek Biesiadka und Wolfram Saenger von der Freien Universität Berlin errechnet.

Die grundlegenden strukturellen Arbeiten an den Photosystemen I und II wurden zuvor im Rahmen des Sonderforschungsbereichs "Gerichtete Membranprozesse" (Sfb 312) und werden jetzt im Sonderforschungsbereich "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen" (Sfb 498) der Deutschen Forschungsgemeinschaft gefördert. Sie dienen dem besseren Verständnis der Photosynthese und damit generell der Umwandlung von Lichtenergie in chemische oder mechanische Energie. Die detaillierte Kenntnis dieser Vorgänge ist eine notwendige Voraussetzung, um Umwelt- und Ressourcen-schonende Energieformen für die Zukunft entwickeln zu können. Dies den Algen, Bakterien und Pflanzen einmal ähnlich raffiniert nachzumachen, wird eine große Herausforderung für die Wissenschaft sein.

* 1 Angström = zehn hoch minus zehn Meter

Von Catarina Pietschmann

Nähere Informationen erteilen Ihnen gern:
- Prof. Dr. Wolfram Saenger, Institut für Chemie und Biochemie / Kristallographie der Freien Universität Berlin, Tel.: 030 / 838-53412, E-Mail: saenger@chemie.fu-berlin.de
- Dr. Athina Zouni, Max-Volmer-Laboratorium für Biophysikalische Chemie der Technischen Universität Berlin, Tel.: 030 / 314-25580 oder 314-25650, E-Mail: Zouni@phosis1.chem.tu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Berichte zu: Photosynthese Photosystem Protein-Cofaktor-Komplex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften