Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hauptschalter für die Entwicklung von Blutzellen entdeckt

28.11.2005


Bisher kennt die Forschung rund 20 Genschalter, welche die Entwicklung der verschiedenen Blutzellen aus den Blutstammzellen des Knochenmarks steuern. Eine zentrale Rolle unter diesen so genannten Transkriptionsfaktoren spielt dabei der Genschalter PU.1. Er steuert die Entwicklung zweier großer Blutzell-Linien des Immunsystems, einmal der Lymphozyten, zum anderen der myeloischen Blutzellen. PU.1 reguliert auch die Entwicklung der Blutstammzellen, und stellt damit sicher, dass sich immer wieder neue Blutzellen bilden. Wie aber wird dieser Genschalter selbst gesteuert?

... mehr zu:
»Blutzelle »Genschalter »URE

Der Zellbiologe Dr. Frank Rosenbauer, der kürzlich von den Harvard Institutes of Medicine in Boston, USA, mit Förderung aus dem Impuls- und Vernetzungsfonds des Präsidenten der Helmholtz-Gemeinschaft als Nachwuchsgruppenleiter an das zu dieser Forschungsgemeinschaft gehörende Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch berufen worden ist, hat im Tierversuch einen Hauptschalter für PU.1 nachgewiesen. Dieser Hauptschalter, kurz URE (upstream regulatory element) genannt, dreht den Genschalter nicht einfach an- oder aus, sondern kann ihn auch fein steuern, wie Dr. Rosenbauer jetzt erstmals zeigen konnte. Je nachdem, ob URE den Genschalter hoch- oder herunterreguliert, bilden sich aus den Vorläuferzellen der Lymphozyten entweder B- oder T-Zellen. Fehlt URE, entwickeln die Tiere eine Reihe verschiedener Blutkrebsformen, an denen sie innerhalb weniger Monate sterben. Die Arbeit von Dr. Rosenbauer und seinen Kollegen aus den USA und dem MDC hat jetzt die Zeitschrift Nature Genetics* in ihrer jüngsten online-Ausgabe (27. November 2005, doi:10.1038/ng1679) veröffentlicht.

Was die Entwicklung der T-Zellen angeht, so konnten Dr. Rosenbauer und seine Kollegen weiter zeigen, dass der Hauptschalter URE in einen Signalweg eingebunden ist, den Forscher wnt-pathway nennen. Er spielt eine entscheidende Rolle für die Entwicklung eines komplexen und gesunden Organismus und reicht von der Oberfläche einer Zelle bis in den Zellkern mit der genetischen Schaltzentrale. Während der T-Zell-Entwicklung wird der wnt-Signalweg normalerweise abgeschaltet, was dazu führt, dass der Hauptschalter URE den Genschalter PU.1 stilllegt. Ist die Signalübertragung auf diesem Informationskanal jedoch gestört, kann PU.1 nicht richtig abgeschaltet werden. Die Folge: die T-Zellen reifen nicht aus und es entstehen Fehlbildungen und Tumore. „Die Deregulation von PU.1 bereitet die Plattform für weitere Mutationen in den Blutstammzellen bzw. Vorläuferzellen und damit für die Entstehung einer Reihe verschiedener Blutkrebsformen“ erläutert Dr. Rosenbauer die Bedeutung dieses Prozesses. Als Nächstes wollen die MDC-Forscher zusammen mit Blutkrebsspezialisten aus der Charité-Universitätsmedizin Berlin Patientenblut untersuchen, um festzustellen, ob die aus den Tierversuchen gewonnenen Erkenntnisse auch bei Störungen der Blutzellentwicklung des Menschen nachweisbar sind.

Barbara Bachtler | MDC Berlin
Weitere Informationen:
http://www.mdc-berlin.de

Weitere Berichte zu: Blutzelle Genschalter URE

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise